首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500–50,000, while δ13C and δD values of methane ranged from ?66.0 to ?63.2‰ VPDB and ?204.6 to ?196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., ?40.8 to ?27.4‰ VPDB and ?41.3 to ?30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3–16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.  相似文献   

2.
Macro- and meiofaunal communities were examined at four geomorphologically distinct sites with different gas- and oil-bearing fluid characteristics in the northern, central and southern basins of Lake Baikal. All sites had elevated concentrations of bicarbonate, nitrate, sulphate and chloride ions in pore fluids, with highest values at the Frolikha vent. Elevated levels of iron ions were found in pore waters of the St. Petersburg methane seep and the Gorevoy Utes oil seep. The chemical composition of pore waters at the Malenky mud volcano was similar to that reported in earlier work. Consistent with published data, the Frolikha vent (northern basin) and the St. Petersburg methane seep (central basin) were characterised by methane of mixed genesis (thermogenic + biogenic), whereas the methane source was mainly thermogenic at the Gorevoy Utes oil seep (central basin) and biogenic at the Malenky mud volcano (southern basin). In contrast to marine seep ecosystems, the macrofauna was dominated only by amphipods, giant planarians and oligochaetes, whereas bivalves were absent; the meiofauna was similar to its marine counterpart, being dominated by nematodes, cyclops, harpacticoids and ostracods. A statistically significant positive relationship was revealed between faunal abundance and the availability of bacterial mats on seep sediments. Moreover, ANOVA tests showed significant increases in both meiozoobenthic and macrozoobenthic densities at “hot spot” vent/seep sites relative to discharge-free reference sites. The isotopic composition of carbon and nitrogen at various trophic levels of these benthic vent/seep communities was found to differ markedly from that reported by earlier studies for the pelagic and other benthic food webs in Lake Baikal. As in marine seeps, the macrofauna had variable isotopic signatures. Light δ13C and δ15N values suggest the utilization of chemosynthetically fixed and/or methane-derived organic matter. By contrast, the heavy δ13C signatures of some mobile amphipods likely reflect consumption of photosynthetically derived carbon. These findings would at least partly explain why Lake Baikal is a notable outlier in global temperature–biodiversity patterns, exhibiting the highest biodiversity of any lake worldwide but at an extremely cold average temperature.  相似文献   

3.
The Coal Oil Point seep field located offshore Santa Barbara, CA, consists of dozens of named seeps, including a peripheral ~200 m2 area known as Brian Seep, located in 10 m water depth. A single comprehensive survey of gas flux at Brian Seep yielded a methane release rate of ~450 moles of CH4 per day, originating from 68 persistent gas vents and 23 intermittent vents, with gas flux among persistent vents displaying a log normal frequency distribution. A subsequent series of 33 repeat surveys conducted over a period of 6 months tracked eight persistent vents, and revealed substantial temporal variability in gas venting, with flux from each individual vent varying by more than a factor of 4. During wintertime surveys sediment was largely absent from the site, and carbonate concretions were exposed at the seafloor. The presence of the carbonates was unexpected, as the thermogenic seep gas contains 6.7% CO2, which should act to dissolve carbonates. The average δ13C of the carbonates was ?29.2?±?2.8‰ VPDB, compared to a range of ?1.0 to +7.8‰ for CO2 in the seep gas, indicating that CO2 from the seep gas is quantitatively not as important as 13C-depleted bicarbonate derived from methane oxidation. Methane, with a δ13C of approximately ?43‰, is oxidized and the resulting inorganic carbon precipitates as high-magnesium calcite and other carbonate minerals. This finding is supported by 13C-depleted biomarkers typically associated with anaerobic methanotrophic archaea and their bacterial syntrophic partners in the carbonates (lipid biomarker δ13C ranged from ?84 to ?25‰). The inconsistency in δ13C between the carbonates and the seeping CO2 was resolved by discovering pockets of gas trapped near the base of the sediment column with δ13C-CO2 values ranging from ?26.9 to ?11.6‰. A mechanism of carbonate formation is proposed in which carbonates form near the sediment–bedrock interface during times of sufficient sediment coverage, in which anaerobic oxidation of methane is favored. Precipitation occurs at a sufficient distance from active venting for the molecular and isotopic composition of seep gas to be masked by the generation of carbonate alkalinity from anaerobic methane oxidation.
Figure
Processes modulating carbonate formation at Brian Seep (California) during times of high and low sediment burden  相似文献   

4.
We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between ?9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.  相似文献   

5.
Assessments of the molecular and isotopic composition of hydrate-bound and dissolved gases in pore water were conducted during the multi-phase gas hydrate project (MHP-09) cruise VER09-03 to the southern basin of Lake Baikal in September 2009. To avoid changes in gas composition during core sampling and transport, various headspace methods were investigated aimed at preserving the dissolved gases in pore water. When distilled water was added to the sediment samples, the concentrations of carbon dioxide and oxygen decreased because of dissolution into the water and/or microbial consumption. When the headspace was not flushed with inert gases, trace levels of hydrogen and ethylene were detected. The findings suggest that best preparation is achieved by flushing the headspace with helium, and adding a saturated aqueous solution of sodium chloride. This improved headspace method served to examine the molecular and isotopic compositions of gas samples retrieved at several new sites in the southern basin. Methane was the major component, and the proportion of ethane ranged widely from 0.0009 to 1.67?mol% of the total hydrocarbon gases. The proportions of propane and higher hydrocarbons were small or less than their detection limits. The carbon isotope signatures suggest that microbial-sourced methane and ethane were dominant in the Peschanka study area, whereas ethane was of thermogenic origin at all other study sites in the southern basin of Lake Baikal.  相似文献   

6.
Detailed lithological, biogeochemical and molecular biological analyses of core sediments collected in 2002–2006 from the vicinity of the Malenky mud volcano, Lake Baikal, reveal considerable spatial variations in pore water chemical composition, with total concentrations of dissolved salts varying from 0.1 to 1.8‰. Values of methane δ13С in the sediments suggest a biogenic origin (δ13Сmin. ?61.3‰, δ13Сmax. ?72.9‰). Rates of sulphate reduction varied from 0.001 to 0.7 nmol cm?3 day?1, of autotrophic methanogenesis from 0.01 to 2.98 nmol CH4 cm?3 day?1, and of anaerobic oxidation of methane from 0 to 12.3 nmol cm?3 day?1. These results indicate that methanogenic processes dominate in gas hydrate-bearing sediments of Lake Baikal. Based on clone libraries of 16S rRNA genes amplified with Bacteria- and Archaea-specific primers, investigation of microbial diversity in gas hydrate-bearing sediments revealed bacterial 16S rRNA clones classified as Deltaproteobacteria, Gammaproteobacteria, Chloroflexi and OP11. Archaeal clone sequences are related to the Crenarchaeota and Euryarchaeota. Baikal sequences of Archaea form a distinct cluster occupying an intermediate position between the marine groups ANME-2 and ANME-3 of anaerobic methanotrophs.  相似文献   

7.
In Zakynthos Island (Greece), authigenic cementation of marine sediment has formed pipe-like, disc and doughnut-shaped concretions. The concretions are mostly composed of authigenic ferroan dolomite accompanied by pyrite. Samples with >80% dolomite, have stable isotope compositions in two groups. The more indurated concretions have δ18O around +4‰ and δ13C values between −8 and −29‰ indicating dolomite forming from anaerobic oxidation of thermogenic methane (hydrocarbon seep), in the sulphate-methane transition zone. The outer surfaces of some concretions, and the less-cemented concretions, typically have slightly heavier isotopic compositions and may indicate that concretion growth progressed from the outer margin in the ambient microbially-modified marine pore fluids, inward toward the central conduit where the isotopic compositions were more heavily influenced by the seep fluid. Sr isotope data suggest the concretions are fossil features, possibly of Pliocene age and represent an exhumed hydrocarbon seep plumbing system. Exposure on the modern seabed in the shallow subtidal zone has caused confusion, as concretion morphology resembles archaeological stonework of the Hellenic period.  相似文献   

8.
Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of ?57 to ?136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of ?43 to ?133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the possible involvement of at least two distinct AOM-related microbial consortia at the inferred AOM depth zonation of G11 and G12 pockmark sediments. In both sediment cores, the δ13C profiles for most archaeal lipids suggest a direct assimilation of dissolved inorganic carbon (DIC) in addition to methane by ANMEs (chemoautotrophy); constant and highly depleted δ13C profiles for PMI:3, an archaeal lipid biomarker presumably related to ANME-2, suggest a direct assimilation of 13C-depleted methane-derived carbon via AOM (methanotrophy). Evidently, the common approach of investigating lipid biomarker contents and δ13C signatures in cold seep sediments does not suffice to precisely discriminate between the carbon assimilation mode for each ANME archaeal group and associated bacteria. Rather, this needs to be combined with further specific labelling studies including different carbon sources (methane carbon, methane-derived organic intermediates and DIC) in order to unravel the metabolic pathways of each microbial consortium involved in AOM (ANME-1 vs. ANME-2 vs. ANME-3 archaeal group and associated bacteria).  相似文献   

9.
Methane is a useful tracer for studying hydrothermal discharge, especially where the source fluids are of low temperature and lack metal precipitates. However, the dual origins of deep-sea methane, both chemical and biological, complicate the interpretation of methane observations. Here, we use both the concentration and stable carbon isotopic composition (δ13C) of dissolved methane to trace hydrothermal plumes and identify the source and behavior of methane at two sites of newly discovered hydrothermal activity on the Central Indian Ridge (11–13°S). At both sites, methane and optical anomalies between 2500 and 3500 m at all stations indicate active hydrothermal discharge. We compared methane concentrations and δ13C at three stations, two (CTIR110136 and CTIR110208) with the most prominent anomalies at each site, and a third (CTIR110140) with near-background methane values. At stations CTIR110136 and CTIR110208, the concentration and δ13C of methane in distinct plumes ranged from 3.3 to 42.3 nmol kg−1 and −30.0 to −15.4‰, respectively, compared to deep-water values of 0.5 to 1.2 nmol kg−1 and −35.1 to −28.9‰ at the station with a near-background distal plume (CTIR110140). δ13C was highest in the center of the plumes at CTIR110136 (−15.4‰) and CTIR110208 (−17.8‰). From the plume values we estimate that the δ13C of methane in the hydrothermal fluids at these stations was approximately −19‰ and thus the methane was most likely derived from magmatic outgassing or the chemical synthesis of inorganic matter. We used the relationship between δ13C and methane concentration to examine the behavior of methane at the plume stations. In the CTIR110208 plume, simple physical mixing was likely the major process controlling the methane profile. In the CTIR110136 plume we interpret a more complicated relationship as resulting from microbial oxidation as well as physical mixing. We argue that this difference in methane behavior between the two areas stems from a distinct bathymetric dissimilarity between the two stations. The location of CTIR110208 on the open slope of a ridge allowed rapid plume dispersion and physical mixing, whereas the location of CTIR110136 in a small basin surrounded by wall structures inhibited physical mixing and enhanced microbial oxidation.  相似文献   

10.
Natural marine gas hydrate was discovered in Korean territorial waters during a 2007 KIGAM cruise to the central/southwestern Ulleung Basin, East Sea. The first data on the geochemical characterization of hydrate-bound water and gas are presented here for cold seep site 07GHP-10 in the central basin sector, together with analogous data for four sites (07GHP-01, 07GHP-02, 07GHP-03, and 07GHP-14) where no hydrates were detected in other cores from the central/southwestern sectors. Hydrate-bound water displayed very low concentrations of major ions (Cl, SO42−, Na+, Mg2+, K+, and Ca2+), and more positive δD (15.5‰) and δ18O (2.3‰) signatures compared to seawater. Cl freshening and more positive isotopic values were also observed in the pore water at gas hydrate site 07GHP-10. The inferred sulfate–methane interface (SMI) was very shallow (<5 mbsf) at least at four sites, suggesting the widespread occurrence of anaerobic oxidation of methane (AOM) at shallow sediment depths, and possibly high methane flux. Around the SMI, pore water alkalinity was very high (>40 mM), but the carbon isotopic ratios of dissolved inorganic carbon (δ13CDIC) did not show minimum values typical of AOM. Moreover, macroscopic authigenic carbonates were not observed at any of the core sites. This can plausibly be explained by carbon with high δ13C values diffusing upward from below the SMI, increasing alkalinity via deep methanogenesis and eventually escaping as alkalinity into the water column, with minor precipitation as solid phase. This contrasts, but is not inconsistent with recent reports of methane-fuelled carbonate formation at other sites in the southwestern basin sector. Methane was the main hydrocarbon component (>99.85%) of headspace, void, and hydrate-bound gases, C1/C2+ ratios were at least 1,000, and δ13CCH4 and δDCH4 values were in the typical range of methane generated by microbial reduction of CO2. This is supported by the δ13CC2H6 signatures of void and hydrate-bound gases, and helps clarify some contradictory interpretations existing for the Ulleung Basin as a whole. In combination, these findings suggest that deep biogenic gas and pore waters migrate upward through pathways such as hydrofractures, and measurably influence the shallow carbon cycle. As a result, cation-adjusted alkalinity/removed sulfate diagrams cannot always serve to estimate the degree of alkalinity produced by sulfate reduction and AOM in high methane flux areas.  相似文献   

11.
On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20–30 m above seafloor, 3,010–3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (–42.6 to –24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to –5.2‰) and low δ18O values (down to –2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic oxidation of methane and of sulphide that promotes carbonate dissolution and gypsum precipitation. These findings imply that the coupling of carbon and sulphur microbial reactions represents the major link for the transfer of elements and for carbon isotope fractionation between fluids and authigenic minerals. A new challenge awaiting future studies in cold seep environments is to expand this work to oxidized and reduced sulphur authigenic minerals.  相似文献   

12.
Authigenic carbonates from outcrops of the northern Apennines consist of small and irregular lenses and exhibit numerous features indicative of cold-seep settings. Detailed petrographic, mineralogical and geochemical studies from two Miocene deposits are presented. The first carbonate outcrop, named Fosso Riconi, is located in the foredeep basin of the Apenninic chain, whereas the second deposit represents a satellite basin called Sarsetta. The stable isotope data from specific carbonate minerals show a wide range of values well known from other palaeoseeps of the Apennine Mountains. The majority of seep carbonates are formed by low-Mg calcite and ankerite. Those minerals have δ13C values between ?7 and ?23‰ V-PDB, suggesting variable amounts of carbonate derived from oxidized methane, seawater (dissolved inorganic carbon) and sedimentary organic matter. Dolomite samples have the lowest δ13C values (?30.8 to ?39.0‰ V-PDB), indicating methane as the main carbon source. The findings suggest an evolutionary formation of the seeps and development of authigenic carbonates influenced by the activity of chemosynthetic organisms, of which large lucinid clams are preserved. Bioirrigation by the clams controlled the sediment–water exchange, and is here considered as an explanation for the anomalous Mg content of the calcite. We hypothesize that the seep carbonates were formed during periods of active methane-rich seepage, whereas during periods of slow seepage carbonate formation was reduced. Despite different geological settings, the two examined deposits of Sarsetta and Fosso Riconi show similar features, suggesting that a common pattern of fluid circulation played a major role in carbonate formation at both seep sites.  相似文献   

13.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   

14.
The relative contribution of chemosynthesis in heterotrophic fauna at seeps is known to be influenced by depth and by habitat. Using stable isotopes of carbon and nitrogen, we investigated macro‐ and megafaunal nutritional patterns in Norwegian margin cold seeps by comparing food webs both among habitats within a seep site and between different sites. The very active Håkon Mosby mud volcano (HMMV) is characterized by geochemical gradients, microbial activity and faunal zonation from the centre to the periphery. The Storegga Slide (600–900 m depth) has pockmarks with patchy less active seeps, and also shows concentric zonation of habitats but at much smaller spatial scale. The dominant carbon source for macrofaunal nutrition in both areas was chemosynthetically fixed and the bulk of organic carbon was derived from sulphur‐oxidizing bacteria. In HMMV, food chains were clearly separated according to habitats, with significantly lighter δ13C signatures on microbial mats and adjacent sediment (?33.06 to ?50.62‰) than in siboglinid fields (?19.83 to ?35.03‰). Mixing model outputs revealed that the contribution of methane‐derived carbon was small in siboglinid fields (0–17%) but significant (39–61%) in the microbial mats. Moreover, the variability of macrofauna signatures within this later habitat suggests the co‐occurrence of two food chains, one based on primary production via methanotrophy and the other via sulphide oxidation. The length of the food chains also varied among habitats, with at least one more trophic level in the siboglinid fields located at the periphery of the volcano. Conversely, in Storrega pockmarks, faunal δ13C signatures did not vary among habitats but among species, although separate food chains seem to co‐occur. The small size of the seepage areas and their lower fluxes compared to HMMV allow more background species to penetrate the seep area, increasing the range of δ15N and the trophic level number. Probably due to the higher flux of photosynthetic particulate organic carbon, the overall chemosynthesis‐based carbon contribution in invertebrate nutrition was lower than that in HMMV.  相似文献   

15.
Methane seeps occur at depths extending to over 7000 m along the world's continental margins, but there is little information about the infaunal communities inhabiting sediments of seeps deeper than 3000 m. Biological sampling was carried out off Unimak Island (3200–3300 m) and Kodiak Island (4500 m) on the Aleutian margin, Pacific Ocean and along the Florida Escarpment (3300 m) in the Gulf of Mexico to investigate the community structure and nutrition of macrofauna at these sites. We addressed whether there are characteristic infaunal communities common to the deep‐water seeps or to the specific habitats (clam beds, pogonophoran fields, and microbial mats) studied here, and ask how these differ from background communities or from shallow‐seep settings sampled previously. We also investigated, using stable isotopic signatures, the utilization of chemosynthetically fixed and methane‐derived organic matter by macrofauna from different regions and habitats. Within seep sites, macrofaunal densities were the greatest in the Florida microbial mats (20,961 ± 11,618 ind·m−2), the lowest in the Florida pogonophoran fields (926 ± 132 ind·m−2), and intermediate in the Unimak and Kodiak seep habitats. Seep macrofaunal densities differed from those in nearby non‐seep sediments only in Florida mat habitats, where a single, abundant species of hesionid polychaete comprised 70% of the macrofauna. Annelids were the dominant taxon (>60%) at all sites and habitats except in Florida background sediments (33%) and Unimak pogonophoran fields (27%). Macrofaunal diversity (H′) was lower at the Florida than the Alaska seeps, with a trend toward reduced richness in clam bed relative to pogonophoran field or non‐seep sediments. Community composition differences between seep and non‐seep sediments were evident in each region except for the Unimak margin, but pogonophoran and clam bed macrofaunal communities did not differ from one another in Alaska. Seep δ13C and δ15N signatures were lighter for seep than non‐seep macrofauna in all regions, indicating use of chemosynthetically derived carbon. The lightest δ13C values (average of species’ means) were observed at the Florida escarpment (−42.8‰). We estimated that on average animal tissues had up to 55% methane‐derived carbon in Florida mats, 31–44% in Florida clam beds and Kodiak clam beds and pogonophoran fields, and 9–23% in Unimak seep habitats. However, some taxa such as hesionid and capitellid polychaetes exhibited tremendous intraspecific δ13C variation (>30‰) between patch types. Overall we found few characteristic communities or features common to the three deep‐water seeps (>3000 m), but common properties across habitats (mat, clam bed, pogonophorans), independent of location or water depth. In general, macrofaunal densities were lower (except at Florida microbial mats), community structure was similar, and reliance on chemosynthesis was greater than observed in shallower seeps off California and Oregon.  相似文献   

16.
Authigenic carbonates are frequently associated with methane cold-seep systems, which extensively occur in various geologic settings worldwide. Of interest is the relation between the fluids involved in their formation and the isotopic signals recorded in the carbonate cements. Along the Northern Apennines foothills (Italy), hydrocarbons and connate waters still seeping nowadays are believed to be the primary sources for the formation of fossil authigenic carbonate found in Plio-Pleistocene marine sediments. Four selected outcrops of dolomitic authigenic carbonates were analysed to compare signature of seeping fluids with fractionation of stable carbon and oxygen isotopes recorded in the carbonate.Along the foothills, deep methane-rich fluids spontaneously rise to the surface through mud volcanoes or are exploited in wells drilled nearby to the fossil Plio-Pleistocene authigenic carbonates. The plumbing system providing fluids to present-day cold seeps was structurally achieved in Late Miocene and Plio-Pleistocene. δ13C values of methane, which vary from −51.9 to −43.0‰ VPDB, indicate that gas composition from the deep hydrocarbon reservoirs is relatively uniform along the foothills. On the contrary, δ13C in fossil authigenic carbonates strongly varies among different areas and also within the same outcrop.The different carbon sources that fed the investigated carbonates were identified and include: thermogenic methane from the deep Miocene reservoirs, 13C-enriched CO2 derived from secondary methanogenesis and microbial methane from Pliocene successions buried in the Po Plain. The δ13C variability documented among samples from a single outcrop testifies that the authigenic carbonates might represent a record of varying biogeochemical processes in the hydrocarbon reservoirs. The sources of stable oxygen isotopes in authigenic carbonates are often ascribed to marine water. Oxygen isotopic fractionation in the dolomite cements indicates that marine pore water couldn't be the sole source of oxygen. δ18O values provide a preliminary evidence that connate waters had a role in the carbonates precipitation. The concomitant occurrence of active cold seepages and fossil record of former plumbing systems suggests that generation and migration of hydrocarbons are long-lasting and very effective processes along the Northern Apennines foothills.  相似文献   

17.
The assessment of gas origin in mud volcanoes and related petroleum systems must consider post-genetic processes which may alter the original molecular and isotopic composition of reservoir gas. Beyond eventual molecular and isotopic fractionation due to gas migration and microbial oxidation, investigated in previous studies, we now demonstrate that mud volcanoes can show signals of anaerobic biodegradation of natural gas and oil in the subsurface. A large set of gas geochemical data from more than 150 terrestrial mud volcanoes worldwide has been examined. Due to the very low amount of C2+ in mud volcanoes, isotopic ratios of ethane, propane and butane (generally the best tracers of anaerobic biodegradation) are only available in a few cases. However, it is observed that 13C-enriched propane is always associated with positive δ13CCO2 values, which are known indicators of secondary methanogenesis following anaerobic biodegradation of petroleum. Data from carbon isotopic ratio of CO2 are available for 134 onshore mud volcanoes from 9 countries (Azerbaijan, Georgia, Ukraine, Russia, Turkmenistan, Trinidad, Italy, Japan and Taiwan). Exactly 50% of mud volcanoes, all releasing thermogenic or mixed methane, show at least one sample with δ13CCO2 > +5‰ (PDB). Thermogenic CH4 associated with positive carbon isotopic ratio of CO2 generally maintains its δ13C-enriched signature, which is therefore not perturbed by the lighter secondary microbial gas. There is, however, high variability in the δ13CCO2 values within the same mud volcanoes, so that positive δ13CCO2 values can be found in some vents and not in others, or not continuously in the same vent. This can be due to high sensitivity of δ13CCO2 to gas–water–rock interactions or to the presence of differently biodegraded seepage systems in the same mud volcano. However, finding a positive δ13CCO2 value should be considered highly indicative of anaerobic biodegradation and further analyses should be made, especially if mud volcanoes are to be used as pathfinders of the conditions indicative of subsurface hydrocarbon accumulations in unexplored areas.  相似文献   

18.
This article reviews the abnormal characteristics of shale gases (natural gases produced from organic-rich shales) and discusses the cause of the anomalies and mechanisms for gas enrichment and depletion in high-maturity organic-rich shales. The reported shale gas geochemical anomalies include rollover of iso-alkane/normal alkane ratios, rollover of ethane and propane isotopic compositions, abnormally light ethane and propane δ13C values as well as isotope reversals among methane, ethane and propane. These anomalies reflect the complex histories of gas generation and associated isotopic fractionation as well as in-situ “mixing and accumulation” of gases generated from different precursors at different thermal maturities. A model was proposed to explain the observed geochemical anomalies. Gas generation from kerogen cracking at relatively low thermal maturity accounted for the increase of iso-alkane/normal alkane ratios and ethane and propane δ13C values (normal trend). Simultaneous cracking of kerogen, retained oil and wet gas and associated isotopic fractionation at higher maturity caused decreasing iso-alkane/normal alkane ratios, lighter ethane and propane δ13C and corresponding conversion of carbon isotopic distribution patterns from normal through partial reversal to complete reversal. Relatively low oil expulsion efficiency at peak oil generation, low expulsion efficiency at peak gas generation and little gas loss during post-generation evolution are necessary for organic-rich shales to display the observed geochemical anomalies. High organic matter richness, high thermal maturity (high degrees of kerogen-gas and oil-gas conversions) and late-stage (the stage of peak gas generation and post-generation evolution) closed system accounted for gas enrichment in shales. Loss of free gases during post-generation evolution may result in gas depletion or even undersaturation (total gas content lower than the gas sorption capacity) in high-maturity organic-rich shales.  相似文献   

19.
Sediment cores from the REGAB pockmark, an active cold seep area in the southeast Atlantic, were analysed for their lipid biomarker distribution and associated stable carbon isotopic composition. Substantial amounts of diagnostic archaeal lipids were found, consisting mainly of archaeol, sn-2 hydroxyarchaeol and crocetane. All archaeal lipids were profoundly depleted in 13C with δ13C values as low as −133‰. Concurrently, abundant monoalkylglycerolethers (MAGE), assigned to sulphate-reducing bacteria, were identified and showed strong 13C-depletions (δ13C between −86‰ and −95‰). The structural and isotopic patterns of these microbial lipids provided compelling evidence for anaerobic oxidation of methane (AOM) occurring in REGAB sediments, mediated by archaea and sulphate reducing bacteria. Lipid fingerprints indicated that anaerobic methanotrophic archaea (ANME-2) and sulphate-reducing bacteria from the Desulfosarcina/Desulfococcus cluster are the dominant AOM assemblages. Depth profiles implied that highest AOM takes place below the upper 2 cm, mainly in the 6–12 cm depth interval. Significant abundances of 13C-depleted diploptene and 4α-methylsterols were found as well, inferring that aerobic methanotrophy occurs in the surface sediment interval. This first biomarker study at the recently investigated cold seeps in the SE Atlantic expand on existing work on AOM settings and add new evidence for aerobic and anaerobic methanotrophic communities occurring in close vicinity.  相似文献   

20.
Authigenic carbonates are common at cold seep sites as a result of microbial oxidation of hydrocarbons. Seep carbonate samples were collected from the surface of the Bush Hill (Green Canyon Block 185, Gulf of Mexico), a mound containing gas hydrate. The carbonates consisted of oily, porous limestone slabs and blocks containing bioclasts and matrix. Analysis by X-ray diffraction shows that aragonite is the dominant mineral (89–99 wt% with an average of 94 wt%) in the matrix of seep carbonate. This cement occurs in microcrystalline, microspar, and sparite forms. The moderate 13C depletion of the seep carbonate (the most depleted one has δ13C value of −29.4‰, and 26 of 38 subsamples have δ13C values >−20.0‰) indicates that the non-methane hydrocarbons was incorporated during seep carbonate precipitation. Relative enrichment of 18O may be related to localized destabilization of gas hydrate or derived from 18O-enriched pore water originated from smectite–illite transition in the deep sediments. The total content of rare earth elements (REE) of the 5% HNO3-treated solution of the carbonates is from 0.40 ppm to 30.9 ppm. The shale-normalized REE patterns show varied Ce anomalies from significantly negative, slightly negative, and no to positive Ce anomalies. Variable content of trace elements, total REE, and Ce anomalies in different samples and even in the different carbonate mineral forms (microcrystalline, microspar and sparite) of the same sample suggest that the formation condition of the Bush Hill seep carbonate is variable and complex, which is possibly controlled by the rate of fluid flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号