首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, by assuming the equilibrium temperatures of RRab Lyrae variables defined by Carney, Storm & Jones as correct we show that temperatures derived from ( B − V ) colour (mean colour over the pulsational cycle calculated on the magnitude scale) transformations by Bessel, Castelli & Plez are consistent with the Carney et al. equilibrium temperatures within a probable error of δ  log  T e =±0.003 . As a consequence, it is shown that the pulsational temperature scale temperature–period–blue amplitude [ T eff= f ( P , A B )] relation provided by De Santis, who studied the ( B − V ) colour of about 70 stars of Lub's sample, is a suitable relation, being reddening- and metallicity-free, to calculate equilibrium temperatures for RRab variables. This relation is independent of variable mass and luminosity within a large range of period-shift from the mean period–amplitude relation valid for Lub's sample of variables. On the contrary, it is also shown that a temperature–amplitude–metallicity relation is strictly dependent on the period–amplitude relation of the sample used for calibrating it: we prove that this means it is dependent on both the mass and luminosity variations of variables.  相似文献   

2.
Effective temperatures T eff, surface gravities log  g and interstellar extinctions A V are found for 107 B stars. Distances d of the stars, which are based on the derived T eff, log  g and A V values, show good agreement with those obtained from the Hipparcos parallaxes. Comparing the T eff and log  g values with evolutionary computations, we infer masses, radii, luminosities, ages and relative ages of the stars. Empirical relations between the T eff and log  g parameters, on the one hand, and the photometric indices Q , [ c 1] and β , on the other hand, are constructed; these relations give a fast method for the T eff and log  g estimation of early and medium B stars. Inclusion of the infrared J , H and K colours into the T eff, log  g and A V determination shows that (i) the T eff and log  g parameters are altered only slightly; (ii) the A V value is rather sensitive to these colours, so an accuracy better than 0.05 mag in the JHK data is necessary for precise A V evaluation.  相似文献   

3.
Hipparcos satellite parallaxes for 22 metal-poor field horizontal branch stars with V 0<9 are used to derive their absolute magnitude. The weighted mean value is MV =+0.69±0.10 for an average metallicity of [Fe/H]=−1.41; a somewhat brighter average magnitude of MV =+0.60±0.12 for an average metallicity of [Fe/H]=−1.51 is obtained by eliminating HD 17072, which might be on the first ascent of the giant branch rather than on the horizontal branch. The present values agree with the determinations based on proper motions and application of the Baade–Wesselink method to field RR Lyraes; they are 0.1–0.2 mag fainter than those based on calibration of cluster distances obtained by using local subdwarfs and on alternative distance calibrators for the Large Magellanic Cloud (LMC). The possibility that there is a real difference between the luminosity of the horizontal branch for clusters and the field is briefly commented on.  相似文献   

4.
In order to make an in-depth comparison between theory and observations, we analyse the light and velocity curves of various hydrodynamical models simulating RRab stars. The observations are represented by empirical formulae, derived in this and our earlier papers. It is shown that the overwhelming majority of the models tested do not follow the empirical relations regarding the shape of the light curves and the physical parameters. In almost all cases the luminosities predicted from the model light curves are significantly lower than the corresponding model values. The overall discrepancy of the models is an important indication of the limitation of the applicability of the present theoretical light and velocity curves in the determination of the physical parameters of these stars. In transforming the theoretical data to the observed light curves in V colour and in computing the observed radial velocities, it is shown that both bolometric correction and tracing the line-forming regions have considerable effects on the evaluation of the observed quantities. In an effort to resolve the discrepancy between theory and observations, it is suggested that a proper evaluation of the bolometric correction and radial velocity based on complete dynamical atmosphere models may be a useful step in this direction.  相似文献   

5.
New photometry of RRab and RRc stars in ω Centauri is used to calibrate their absolute magnitudes MV as a function of (a) metallicity and (b) the Fourier parameters of light curves in the V band. The zero point of both calibrations relies on the distance modulus to the cluster derived earlier by the Cluster AgeS Experiment (CASE) project based on observations of the detached eclipsing binary OGLE GC17. For RRab variables, we obtained a relation of   MV = (0.26 ± 0.08)[ Fe/H ] + (0.91 ± 0.13)  . A dereddened distance modulus to the Large Magellanic Cloud (LMC) based on that formula is  μ0= 18.56 ± 0.14 mag  . The second calibration of MV , which is based on Fourier coefficients of decomposed light curves, results in the LMC distance of  μ0= 18.51 ± 0.07 mag  .  相似文献   

6.
By adopting the same approach outlined by De Santis & Cassisi, we evaluate the absolute bolometric magnitude of the zero-age horizontal branch (ZAHB) at the level of the RR Lyrae variable instability strip in selected Galactic globular clusters. This allows us to estimate the ZAHB absolute visual magnitude for these clusters and to investigate its dependence on the cluster metallicity. The derived M V (ZAHB)–[Fe/H] relation, corrected in order to account for the luminosity difference between the ZAHB and the mean RR Lyrae magnitude, has been compared with some of the most recent empirical determinations in this field, such as the one provided by Baade–Wesselink analyses, RR Lyrae periods, Hipparcos data for field variables and main-sequence fitting based on Hipparcos parallaxes for field subdwarfs. As a result, our relation provides a clear support to the 'long' distance scale. We discuss also another method for measuring the distance to Galactic globular clusters. This method is quite similar to the one adopted for estimating the absolute bolometric magnitude of the ZAHB but it relies only on the pulsational properties of the Lyrae variables in each cluster. The reliability and accuracy of this method have been tested by applying it to a sample of globular clusters for which, owing to the morphology of their horizontal branch (HB), the use of the commonly adopted ZAHB fitting is a risky procedure. We notice that the two approaches for deriving the cluster distance modulus provide consistent results when applied to globular clusters, the RR Lyrae instability strip is well populated. As the adopted method relies on theoretical predictions on both the fundamental pulsational equation and the allowed mass range for fundamental pulsators, we give an estimate of the error affecting present results, owing to systematic uncertainties in the adopted theoretical framework.  相似文献   

7.
We describe here the results of a photometric time-sequence survey of the globular cluster M3 (NGC 5272), in a search for contact and detached eclipsing binary stars. We have discovered only one likely eclipsing binary and one SX Phe-type star in spite of monitoring 4077 stars with V  < 20.0 and observing 25 blue straggler stars (BSS). The newly identified SX Phe star, V237, shows a light curve with a variable amplitude. Variable V238 shows variability either with a period of 0.49 d or with a period of 0.25 d. On the cluster colour–magnitude diagram, the variable occupies a position a few hundredths of a magnitude to the blue of the base of the red giant branch. V238 is a likely descendant of a binary blue straggler.   As a side result we obtained high-quality data for 42 of the previously known RR Lyrae variables, including 33 of Bailey type ab, seven type c and two double-mode pulsators. We used equations that relate the physical properties of RRc stars to their pulsation periods and Fourier parameters in order to derive masses, luminosities, temperatures and helium parameters for five of the RRc stars. We also tested equations that relate the [Fe/H], M V and temperature of RRab stars to pulsation period and Fourier parameters. We derived [Fe/H]= −1.42 in good agreement with spectroscopic determinations.  相似文献   

8.
Radiation pressure acts to accelerate dust grains and, by transfer of momentum through collisions with the gas, drives the outflows of late-type stars. Some of these dust–gas collisions may be energetic enough to remove atoms from the dust grains. From an assumed initial size distribution for the dust grains, the method of Krüger et al. is used to study the evolution of a sample of spherical amorphous carbon grains under conditions typical of a late-type star. The size distribution of dust grains is presented for various sets of model parameters. One set of models assumes an initial Mathis, Rumpl & Nordsieck (MRN) distribution for the dust grains. The high-luminosity ( L ∗), high-effective temperature ( T eff) set of parameters has a terminal velocity ( v term) that is near, but above , the upper limit of observed outflow velocities for carbon stars (∼30 km s−1 for the assumed ̇ of 5×10−6 M yr−1). The low L ∗, T eff model has a v term that lies near, but below , the upper limit of observed velocities. A significant amount of sputtering occurs in the high L ∗, T eff model with ∼40 per cent of the grain mass sputtered. About ∼1 per cent of the dust mass is sputtered in the low L ∗, T eff. Another set of models assumes that the dust forms with a log-normal distribution. Here, v term is nearly the same for the high L ∗, T eff model as for the low L ∗, T eff model. This is a result of the large amount of dust mass loss (∼75 per cent) by sputtering in the high L ∗, T eff model.  相似文献   

9.
The sdB star PG 1336−018 is found to be a very short-period eclipsing binary system, remarkably similar to the previously unique system HW Vir. In addition, and unlike HW Vir, the sdB star in the PG 1336 system shows rapid oscillations of the type found in the recently discovered sdB pulsators, or EC 14026 stars. The orbital period, 0.101 0174 d, is one of the shortest known for a detached binary. Analysis of photoelectric and CCD photometry reveals pulsation periods near 184 and 141 s, with semi-amplitudes of ∼0.01 and ∼0.005 mag respectively. Both oscillations might have variable amplitude, and it is probable that other frequencies are present with amplitudes ∼0.003 mag or less. The 184- and 141-s pulsations are in the range of periods predicted by models for hot horizontal-branch stars. Analysis of medium-dispersion spectrograms yields T eff=33 000±1000 K and log g =5.7±0.1 for the sdB primary star, a radial velocity semi-amplitude K 1=78±3 km s−1 and a system velocity γ=6±2 km s−1. Spectrograms from the IUE Final Archive give T eff=33 000±3000 K and E ( B − V )=0.05 for log g =6.0 models. The derived angular radius leads to a distance of 710±50 pc for the system, and an absolute magnitude for the sdB star of +4.1±0.2. A preliminary analysis of U , V and R light curves indicates the orbital inclination to be near 81° and the relative radii to be r 1=0.19 and r 2=0.205. Assuming the mass of the sdB primary to be 0.5 M⊙ leads to a mass ratio q =0.3 for the system, and indicates that the secondary is a late-type dwarf of type ∼M5. As with HW Vir, it is necessary to invoke small limb-darkening coefficients and high albedos for the secondary star to obtain reasonable fits to the observed light curves.  相似文献   

10.
We present new determinations of bolometric corrections and effective temperature scales as a function of infrared optical colours, using a large data base of photometric observations of about 6500 Population II giants in Galactic globular clusters (GGCs), covering a wide range in metallicity (−2.0 < [Fe/H] < 0.0).   New relations for BC K versus ( V  −  K ) , ( J  −  K ) and BC V versus ( B  −  V ), ( V  −  I ), ( V  −  J ), and new calibrations for T eff, using both an empirical relation and model atmospheres, are provided.   Moreover, an empirical relation to derive the R parameter of the infrared flux method as a function of the stellar temperature is also presented.  相似文献   

11.
The discrepancy between a long distance-scale derived from Hipparcos -based distances to globular clusters via main-sequence fitting to local subdwarfs, and a short distance-scale derived from the absolute magnitude of field RR Lyraes via statistical parallaxes and the Baade–Wesselink method could be accounted for whether an intrinsic difference of about ∼0.1–0.2 mag was found to exist between horizontal branch (HB) stars populating the sparse general field and the dense globular clusters. In this paper we discuss the possible existence of such a systematic difference comparing the period-shifts observed for field and cluster RR Lyraes. Various approaches based on different parameters and data sets for both cluster and field variables were used in order to establish the size of such a hypothetical difference, if any. We find that on the whole very small not significant differences exist between the period–metallicity distributions of field and cluster RR Lyraes, thus confirming with a more quantitative approach, the qualitative conclusions by Catelan . This observational evidence translates into a very small difference between the horizontal branch luminosity of field and cluster stars, unless RR Lyraes in globular clusters are about 0.06 M more massive than field RR Lyraes at same metallicity, which is to be proven.  相似文献   

12.
We present a study of a sample of Large Magellanic Cloud red giants exhibiting Long Secondary Periods (LSPs). We use radial velocities obtained from VLT spectral observations and MACHO and OGLE light curves to examine properties of the stars and to evaluate models for the cause of LSPs. This sample is much larger than the combined previous studies of Hinkle et al. and Wood, Olivier & Kawaler.
Binary and pulsation models have enjoyed much support in recent years. Assuming stellar pulsation, we calculate from the velocity curves that the typical fractional radius change over an LSP cycle is greater than 30 per cent. This should lead to large changes in T eff that are not observed. Also, the small light amplitude of these stars seems inconsistent with the radius amplitude. We conclude that pulsation is not a likely explanation for the LSPs. The main alternative, physical movement of the star – binary motion – also has severe problems. If the velocity variations are due to binary motion, the distribution of the angle of periastron in our large sample of stars has a probability of  1.4 × 10−3  that it comes from randomly aligned binary orbits. In addition, we calculate a typical companion mass of  0.09 M  . Less than 1 per cent of low-mass main-sequence stars have companions near this mass  (0.06–0.12 M)  whereas ∼25–50 per cent of low-mass red giants end up with LSPs. We are unable to find a suitable model for the LSPs and conclude by listing their known properties.  相似文献   

13.
In the first part of this work, the empirical correlation of stellar surface brightness F V with ( I c− K ) broad-band colour is investigated by using a sample of stars cooler than the Sun. A bilinear correlation is found to represent well the brightness of G, K and M giant stars. The change in slope occurs at ( I c− K )∼2.1 or at about the transition from K to M spectral types. The same relationship is also investigated for dwarf stars and found to be distinctly different from that of the giants. The dwarf star correlation differs by an average of −0.4 in ( I c− K ) or by a maximum in F V of ∼−0.1, positioning it below that of the giants, with both trends tending towards convergence for the hotter stars in our sample. The flux distribution derived from the F V −( I c− K ) relationship for the giant stars, together with that derived from an F V −( V − K ) relationship and the blackbody flux distribution, is then utilized to compute synthetic light V and colour ( V − R )c, ( V − I )c and ( V − K ) curves of cool spotted stars. We investigate the effects on the amplitudes of the curves by using these F V –colour relations and by assuming the effective gravity of the spots to be lower than the gravity of the unspotted photosphere. We find that the amplitudes produced by using the F V −( I c− K ) relationship are larger than those produced by the other two brightness correlations, meaning smaller and/or warmer spots.  相似文献   

14.
We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of  2.639 0157 ± 0.000 0016  d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses  (M1= 0.66 ± 0.03 M; M2= 0.62 ± 0.03 M)  and radii  (R1= 0.64 ± 0.08 R; R2= 0.61 ± 0.09 R)  of the components, which are consistent with empirical mass–radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of Hα emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys.  相似文献   

15.
We present a new Cepheid reddening and effective temperature scale based on the uvby photometry published in the first paper of this series. Using all available information about the companion stars in Cepheids with bright blue secondaries, we remove their light from the observed light and colour curves. The resulting corrections are as large as 0.05–0.15 mag in several cases for different colour indices. A new photometric approach based on the ( b  −  y ) versus ( B  − V ) two-colour diagram is tested with three other previous calibrations taken from the literature. Two uvby relations in earlier studies turn out to be the most reliable and consistent, and so they are used in deriving colour excesses. We determine systematically higher reddenings for Cepheids with a significant secondary light correction. The dereddened Stro¨mgren colours are calibrated in terms of T eff and log  g using the most recent synthetic colour grids. Our temperature scale is very close to that of Kraft, which is supported by other recent temperature determinations using the infrared flux method or Geneva photometry. The photometric gravities fit some of the earlier theoretical and observational (mainly spectroscopic) results very well.  相似文献   

16.
A new method of determining absolute visual magnitudes of early-type stars, based on averaging Hipparcos parallaxes ( ESA 1997 ) inside samples of the same spectrum and luminosity (Sp/L) classes, is proposed. The used sample consists of 6262 unreddened and reddened OB stars as well as 430 Be stars of luminosity classes Ia, Iab, Ib, II, III, IV and V. The colour excesses of the reddened stars have been calculated using the mean colour indices, according to the SIMBAD data base and the intrinsic ( B − V ) values calibrated for given Sp/L classes by Papaj, Wegner & Krełowski . The values of the total-to-selective extinction   RV = AV / E ( B − V )  for all reddened stars were calculated from the published near-infrared photometric measurements. The calculated visual magnitudes MV of OB and Be stars are compared to those published by Wegner in Paper I, and the earlier determinations of Schmidt-Kaler. Generally, the new values of MV agree well with those given in Paper I, except those for O stars which are systematically brighter than the earlier estimates. The mean absolute magnitudes published by Schmidt-Kaler are generally brighter (except OB stars of luminosity class V) than those determined in this paper.  相似文献   

17.
The absolute visual magnitudes, MV , of A–M stars are based on calculated Hipparcos trigonometric parallaxes. The sample used consists of 30 986 unreddened and reddened A–M stars in luminosity classes Ia, Iab, Ib, II, III, IV and V. The colour excesses of the reddened stars were calculated using the mean colour indices, according to the SIMBAD data base and the intrinsic B − V values calibrated for the given spectral types and luminosity classes by Schmidt-Kaler. The values of the total-to-selective extinction,   RV = AV / E ( B − V )  , for all the reddened stars were calculated from previously published near-infrared photometric measurements. The calculated visual magnitudes, MV , of A–M stars compare with the earlier determinations of Schmidt-Kaler. The mean absolute magnitudes published by Schmidt-Kaler are generally brighter (except for the stars in luminosity classes V and IV) than those determined in this paper.  相似文献   

18.
We present angular diameters for 42 Luminosity Class (LC) I stars and 32 LC II stars that have been interferometrically determined with the Palomar Testbed Interferometer. Derived values of radius and effective temperature are established for these objects, and an empirical calibration of these parameters for supergiants will be presented as a function of spectral type and colours. For the effective temperature versus  ( V − K )0  colour, we find an empirical calibration with a median deviation of  Δ T = 70 K  in the range of  0.7 < ( V − K )0 < 5.1  for LC I stars; for LC II, the median deviation is  Δ T = 120 K  from  0.4 < ( V − K )0 < 4.3  . Effective temperature as a function of spectral type is also calibrated from these data, but shows significantly more scatter than the T EFF versus  ( V − K )0  relationship. No deviation of T EFF versus spectral type is seen for these high-luminosity objects relative to LC II giants. Directly determined diameters range up to  400 R  , though are limited by poor distance determinations, which dominate the error estimates. These temperature and radii measures reflect a direct calibration of these parameters for supergiants from empirical means.  相似文献   

19.
The 'All Sky Automated Survey' (ASAS) photometric observations of LS 1135, an O-type single-lined binary (SB1) system with an orbital period of 2.7 d, show that the system is also eclipsing performing a numerical model of this binary based on the Wilson–Devinney method. We obtained an orbital inclination     . With this value of the inclination, we deduced masses   M 1∼ 30 ± 1 M  and   M 2∼ 9 ± 1 M  , and radii   R 1∼ 12 ± 1 R  and   R 2∼ 5 ± 1 R  for primary and secondary components, respectively. Both the components are well inside their respective Roche lobes. Fixing the T eff of the primary to the value corresponding to its spectral type (O6.5V), the T eff obtained for the secondary component corresponds approximately to a spectral type of B1V. The mass ratio   M 2/ M 1∼ 0.3  is among the lowest known values for spectroscopic binaries with O-type components.  相似文献   

20.
We have detected pulsational radial velocity variations in the rapidly oscillating Ap star HR 3831 which are amplitude- and phase-modulated in the same manner as the photometric variations. In particular, the radial velocities show the same 180° phase reversal at magnetic quadrature as the photometric variations. This confirms the oblique pulsator model, and rules out the spotted pulsator model for these stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号