首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   

2.
It has been known for a long time that the clustering of galaxies changes as a function of galaxy type. This galaxy bias acts as a hindrance to the extraction of cosmological information from the galaxy power spectrum or correlation function. Theoretical arguments show that a change in the amplitude of the clustering between galaxies and mass on large scales is unavoidable, but cosmological information can be easily extracted from the shape of the power spectrum or correlation function if this bias is independent of scale. Scale-dependent bias is generally small on large scales,   k < 0.1  h  Mpc−1  , but on smaller scales can affect the recovery of  Ωm h   from the measured shape of the clustering signal, and have a small effect on the Baryon Acoustic Oscillations. In this paper, we investigate the transition from scale-independent to scale-dependent galaxy bias as a function of galaxy population. We use the Sloan Digital Sky Survey Data Release 5 sample to fit various models, which attempt to parametrize the turn-off from scale-independent behaviour. For blue galaxies, we find that the strength of the turn-off is strongly dependent on galaxy luminosity, with stronger scale-dependent bias on larger scales for more luminous galaxies. For red galaxies, the scale dependence is a weaker function of luminosity. Such trends need to be modelled in order to optimally extract the information available in future surveys, and can help with the design of such surveys.  相似文献   

3.
We investigate the angular correlation function, ο(θ), of the galaxies detected in the 2.1-μm K ' band in 17 fields (101.5 arcmin2 in total), each containing a z ∼1.1 radio galaxy. There is a significant detection of galaxy clustering at a limit of K ∼20, with a ο(θ) amplitude similar to that estimated by Carlberg et al. at K =21.5. The ο(θ) amplitudes of these K -limited samples are higher than expected from the faint galaxy clustering in the blue and red passbands, but consistent with a pure luminosity evolution model if clustering is stable (ε=0) and the correlation function of early-type galaxies is steeper than that of spirals.
We do not detect a significant cross-correlation between the radio galaxies and the other galaxies in these fields. The upper limits on the cross-correlation are consistent with a mean clustering environment of Abell class 0 for z ∼1.1 radio galaxies, similar to that observed for radio galaxies at z ∼0.5, but would argue against an Abell class 1 or richer environment. As Abell 0 clustering around the radio galaxies would not significantly increase the ο(θ) amplitude of galaxies in these fields, stable clustering with a steep ξ( r ) for E/S0 galaxies appears to remain the most likely interpretation of the ο(θ) amplitude.
At K ≤20, the number of galaxy–galaxy pairs of 2–3 arcsec separation exceeds the random expectation by a factor of 2.15±0.26. The excess of close pairs is comparable to that previously reported for R -band data, and consistent with a ∼(1+ z )2 evolution of the galaxy merger rate.  相似文献   

4.
Differences in clustering properties between galaxy subpopulations complicate the cosmological interpretation of the galaxy power spectrum, but can also provide insights about the physics underlying galaxy formation. To study the nature of this relative clustering, we perform a counts-in-cells analysis of galaxies in the Sloan Digital Sky Survey in which we measure the relative bias between pairs of galaxy subsamples of different luminosities and colours. We use a generalized  χ2  test to determine if the relative bias between each pair of subsamples is consistent with the simplest deterministic linear bias model, and we also use a maximum likelihood technique to further understand the nature of the relative bias between each pair. We find that the simple, deterministic model is a good fit for the luminosity-dependent bias on scales above  ∼2  h −1 Mpc  , which is good news for using magnitude-limited surveys for cosmology. However, the colour-dependent bias shows evidence for stochasticity and/or non-linearity which increases in strength towards smaller scales, in agreement with previous studies of stochastic bias. Also, confirming hints seen in earlier work, the luminosity-dependent bias for red galaxies is significantly different from that of blue galaxies: both luminous and dim red galaxies have higher bias than moderately bright red galaxies, whereas the biasing of blue galaxies is not strongly luminosity dependent. These results can be used to constrain galaxy formation models and also to quantify how the colour and luminosity selection of a galaxy survey can impact measurements of the cosmological matter power spectrum.  相似文献   

5.
6.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

7.
8.
We follow the evolution of the galaxy population in a ΛCDM cosmology by means of high-resolution N -body simulations in which the formation of galaxies and their observable properties are calculated using a semi-analytic model. We display images of the spatial distribution of galaxies in the simulations that illustrate its evolution and provide a qualitative understanding of the processes responsible for the various biases that develop. We consider three specific statistical measures of clustering at     and     : the correlation length (in both real and redshift space) of galaxies of different luminosity, the morphology–density relation and the genus curve of the topology of galaxy isodensity surfaces. For galaxies with luminosity below L ∗, the     correlation length depends very little on the luminosity of the sample, but for brighter galaxies it increases very rapidly, reaching values in excess of 10  h −1 Mpc. The 'accelerated' dynamical evolution experienced by galaxies in rich clusters, which is partly responsible for this effect, also results in a strong morphology–density relation. Remarkably, this relation is already well-established at     . The genus curves of the galaxies are significantly different from the genus curves of the dark matter, however this is not a result of genuine topological differences but rather of the sparse sampling of the density field provided by galaxies. The predictions of our model at     will be tested by forthcoming data from the 2dF and Sloan galaxy surveys, and those at     by the DEEP and VIRMOS surveys.  相似文献   

9.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

10.
We present a catalogue of X-ray luminosities for 401 early-type galaxies, of which 136 are based on newly analysed ROSAT PSPC pointed observations. The remaining luminosities are taken from the literature and converted to a common energy band, spectral model and distance scale. Using this sample we fit the L X  :  L B relation for early-type galaxies and find a best-fit slope for the catalogue of ∼2.2. We demonstrate the influence of group-dominant galaxies on the fit and present evidence that the relation is not well modelled by a single power-law fit. We also derive estimates of the contribution to galaxy X-ray luminosities from discrete-sources and conclude that they provide     . We compare this result with luminosities from our catalogue. Lastly, we examine the influence of environment on galaxy X-ray luminosity and on the form of the     relation. We conclude that although environment undoubtedly affects the X-ray properties of individual galaxies, particularly those in the centres of groups and clusters, it does not change the nature of whole populations.  相似文献   

11.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

12.
Using a sample of 19 464 galaxies drawn from the DEEP2 Galaxy Redshift Survey, we study the relationship between galaxy colour and environment at  0.4 < z < 1.35  . We find that the fraction of galaxies on the red sequence depends strongly on local environment out to   z > 1  , being larger in regions of greater galaxy density. At all epochs probed, we also find a small population of red, morphologically early-type galaxies residing in regions of low measured overdensity. The observed correlations between the red fraction and local overdensity are highly significant, with the trend at   z > 1  detected at a greater than 5σ level. Over the entire redshift regime studied, we find that the colour–density relation evolves continuously, with red galaxies more strongly favouring overdense regions at low z relative to their red-sequence counterparts at high redshift. At   z ≳ 1.3  , the red fraction only weakly correlates with overdensity, implying that any colour dependence to the clustering of  ∼ L *  galaxies at that epoch must be small. Our findings add weight to existing evidence that the build-up of galaxies on the red sequence has occurred preferentially in overdense environments (i.e. galaxy groups) at   z ≲ 1.5  . Furthermore, we identify the epoch  ( z ∼ 2)  at which typical  ∼ L *  galaxies began quenching and moved on to the red sequence in significant number. The strength of the observed evolutionary trends at  0 < z < 1.35  suggests that the correlations observed locally, such as the morphology–density and colour–density relations, are the result of environment-driven mechanisms (i.e. 'nurture') and do not appear to have been imprinted (by 'nature') upon the galaxy population during their epoch of formation.  相似文献   

13.
We present measurements of the higher order clustering of red and blue galaxies as a function of scale and luminosity made from the two-degree field galaxy redshift survey (2dFGRS). We use a counts-in-cells analysis to estimate the volume-averaged correlation functions,     , as a function of scale up to the order of   p = 5  , and also the reduced void probability function. Hierarchical amplitudes are constructed using the estimates of the correlation functions:     . We find that (i) red galaxies display stronger clustering than blue galaxies at all orders measured; (ii) red galaxies show values of   S p   that are strongly dependent on luminosity whereas blue galaxies show no segregation in   S p   within the errors; this is remarkable given the segregation in the variance; (iii) the linear relative bias shows the opposite trend to the hierarchical amplitudes, with little segregation for the red sequence and some segregation for the blue; (iv) faint red galaxies deviate significantly from the 'universal' negative binomial reduced void probabilities followed by all other galaxy populations. Our results show that the characteristic colour of a galaxy population reveals a unique signature in its spatial distribution. Such signatures will hopefully further elucidate the physics responsible for shaping the cosmological evolution of galaxies.  相似文献   

14.
15.
The kinematics of satellite galaxies reflect the masses of the extended dark matter haloes in which they orbit, and thus shed light on the mass–luminosity relation (MLR) of their corresponding central galaxies. In this paper, we select a large sample of centrals and satellites from the Sloan Digital Sky Survey and measure the kinematics (velocity dispersions) of the satellite galaxies as a function of the r -band luminosity of the central galaxies. Using the analytical framework presented in More, van den Bosch & Cacciato, we use these data to infer both the mean and the scatter of the MLR of central galaxies, carefully taking account of selection effects and biases introduced by the stacking procedure. As expected, brighter centrals on average reside in more massive haloes. In addition, we find that the scatter in halo masses for centrals of a given luminosity,  σlog  M   , also increases with increasing luminosity. As we demonstrate, this is consistent with  σlog  L   , which reflects the scatter in the conditional probability function   P ( L c| M )  , being independent of halo mass. Our analysis of the satellite kinematics yields  σlog  L = 0.16  ±  0.04  , in excellent agreement with constraints from clustering and group catalogues, and with predictions from a semi-analytical model of galaxy formation. We thus conclude that the amount of stochasticity in galaxy formation, which is characterized by  σlog  L   , is well constrained, independent of halo mass and in a good agreement with current models of galaxy formation.  相似文献   

16.
We use the 2dF Galaxy Redshift Survey to measure the dependence of the b J-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius  8  h −1 Mpc  , and on spectral type, determined from principal component analysis. We find that the galaxy populations at both extremes of density differ significantly from that at the mean density. The population in voids is dominated by late types and shows, relative to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes brighter than   M b J−5log10 h ≲−18.5  . In contrast, cluster regions have a relative excess of very bright early-type galaxies with   M b J−5log10 h ≲−21  . Differences in the mid- to faint-end population between environments are significant: at   M b J−5log10 h =−18  early- and late-type cluster galaxies show comparable abundances, whereas in voids the late types dominate by almost an order of magnitude. We find that the luminosity functions measured in all density environments, from voids to clusters, can be approximated by Schechter functions with parameters that vary smoothly with local density, but in a fashion that differs strikingly for early- and late-type galaxies. These observed variations, combined with our finding that the faint-end slope of the overall luminosity function depends at most weakly on density environment, may prove to be a significant challenge for models of galaxy formation.  相似文献   

17.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

18.
We analyse the two-point correlation function (2PCF) of galaxy groups identified from the 2-degree Field Galaxy Redshift Survey with the halo-based group finder recently developed by Yang et al. With this group catalogue we are able to estimate the 2PCFs for systems ranging from isolated galaxies to rich clusters of galaxies. The real-space correlation length obtained for these systems ranges from ∼4 to ∼15  h −1 Mpc, respectively. The observed correlation amplitude (and the corresponding bias factor) as a function of group abundance is well reproduced by associating galaxy groups with dark matter haloes in the standard Λ-cold dark matter model. Redshift distortions are clearly detected in the redshift-space correlation function, the degree of which is consistent with the assumption of gravitational clustering and halo bias in the cosmic density field. In agreement with previous studies we find a strong increase of the correlation length with the mean intergroup separation. Although well-determined observationally, we show that current theoretical predictions are not yet accurate enough to allow for stringent constraints on cosmological parameters. Finally, we use our results to explore the power-law nature of the 2PCF of galaxies. We split the 2PCF into one- and two-group terms, equivalent to the one- and two-halo terms in halo occupation models, and show that the power-law form of the 2PCF is broken, when only including galaxies in the more massive systems.  相似文献   

19.
We measure the local galaxy far-infrared (FIR) 60 to 100 μm colour–luminosity distribution using an all-sky IRAS survey. This distribution is an important reference for the next generation of FIR–submillimetre surveys that have and will conduct deep extragalactic surveys at 250–500 μm. With the peak in dust-obscured star-forming activity leading to present-day giant ellipticals now believed to occur in submillimetre galaxies near   z ∼ 2.5  , these new FIR–submillimetre surveys will directly sample the spectral energy distributions of these distant objects at rest-frame FIR wavelengths similar to those at which local galaxies were observed by IRAS . We have taken care to correct for the temperature bias and the evolution effects in our IRAS 60-μm-selected sample. We verify that our colour–luminosity distribution is consistent with the measurements of the local FIR luminosity function, before applying it to the higher redshift Universe. We compare our colour–luminosity correlation with recent dust–temperature measurements of submillimetre galaxies and find evidence for pure luminosity evolution of the form  (1 + z )3  . This distribution will be useful for the development of evolutionary models for Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and Spectral and Photometric Imaging Receiver (SPIRE) surveys as it provides a statistical distribution of the rest-frame dust temperatures for galaxies as a function of luminosity.  相似文献   

20.
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5–15 Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ∼30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20 kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20–30 per cent) of the galaxies in our starburst samples have morphologies indicative of either an ongoing or a recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where such local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号