首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
刘伟 《地学前缘》2001,8(4):391-396
辫状微纹长石通过粗化、微孔隙和亚颗粒的形成 ,最终发展为脉状微纹长石和条纹长石 ,粗化沿着不规则的前锋从晶体边缘往内部推移和扩展。亚颗粒和微孔隙的形成极大地提高了碱性长石的反应性和岩石的渗透性。通过沿着晶体边缘的拱状褶边、平行褶边以及褶头的过渡带往整个晶体内的推移和“繁殖” ,辫状微纹长石最终改造为脉状微纹长石和条纹长石。水从褶边向晶体内部的扩散促进了褶边的粗化以及过渡带的发展。流体长石相互作用机制包括 :体积扩散、管道扩散、溶解再沉淀。碱性长石流体的氧同位素交换机制主要是溶解再沉淀。碱性长石在次固相下的微组构重组织发生于约 4 75~ 4 0 0℃的温度下 ,区块性条纹长石的形成温度更低。碱性长石的微组构重组织导致放射成因氩的局部和部分丢失 ,从而给出年轻的表面年龄。  相似文献   

2.
Optical and TEM (transmission electron microscopy) observations of perthites from augite syenites in the Coldwell Complex (Ontario) reveal a complex set of microtextures that outline a multistage thermal history. Regular microtextures (linear or braid texture, straincontrolled, coherent intergrowths) show a progressive evolution from the margin of the intrusion inwards with lamellar spacings in the range 40–100 nm. The textures evolve in a manner similar to those for the Klokken intrusion and reflect differences in cooling rates and bulk composition. Superimposed upon the regular microtexture are 10 m scale compositional fluctuations which we call ripples. The boundary relationships and bulk composition of ripples, which are themselves Ab-rich and Or-rich linear coherent cryptoperthites, suggest that they formed by coarsening during a phase of high-temperature (530°C) fluid-feldspar interaction. This was followed by a return to coherent exsolution in which fluid was not involved. Coarse, irregular, patch microperthite cross-cuts all other microtextures. These final deuteric intergrowths are believed to result from a further low-temperature (< 380° C) fluid-feldspar interaction and are associated with subgrain formation and the presence of micropores. The outermost syenite sample, against a gabbro ring structure, has distinctive, modified microtextures, indicating that the gabbro is, at least in part, a later intrusion. Our findings show that TEM work on alkali feldspar microtextures can identify discrete thermal events in the cooling history of igneous plutons and illustrates the potential of such microtextures for establishing the relative ages of intrusive rocks.  相似文献   

3.
Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol−1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50–100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si–Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated 40Ar/39Ar step-heating schedule. New features called ‘slots’ developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical ‘bubbles’, which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.  相似文献   

4.
Because of frequent discrepancies between the available experimental data and the measured composition of alkali chloride aqueous solutions coexisting with two alkali feldspars in high temperatures-low pressures natural systems, a systematic investigation of the system KAlSi3O8-NaAlSi3O8-KCl-NaCl-H2O has been undertaken.Experiments have been carried out at temperatures from 300 °C to 660 °C, pressures from 0.2 to 2 kbar and total chloride concentrations ranging from 0.05 to 14 moles/kg H2O.No effect of pressure on the feldspars solvus could be detected. Smoothing the experimental data on the basis of the regular assymetric solid solution model yields a critical temperature of 661°C and a critical composition of Or0.36Ab0.64.The equilibrium constant C = m KCl/m NaCl does not depend on total chloride molality, as long as the aqueous solution is homogeneous. But, in the miscibility gap (liquid+vapour) of the fluid, C is always lower in the vapour than in the liquid. The higher the temperature and the lower the pressure, the more striking this effect. For instance, at 500 ° C C vaqour/C liquid = 1 above 1 kb, 0.9 at 600 bars, 0.8 at 500 bars, 0.7 at 400–450 bars.The effect of pressure can be neglected in homogeneous fluids and in the liquid phase of unmixed fluids, but it is very important in the vapour phase (dilute solutions at low pressure).The selected values of C max are (±0.01) 300 ° C0.083; 400 ° C0.139; 500 ° C0.200; 600 ° C0.264; 650 ° C0.298Such a behaviour of the fluid at low pressures explains the abnormally low values of m KCl/m NaCl measured in many natural hydrothermal systems. A new mechanism of alkali metasomatism (especially potassic alterations) is also proposed, taking into account the unmixing of alkali chloride aqueous solutions. This model seems particularly interesting in late magmatic hydrothermal processes, such as those occuring in porphyry type deposits.  相似文献   

5.
The syenitic layered series in the Klokken intrusion is surrounded by a zone (500 m thick) of nearly structureless unlaminated syenite followed outwards by a zone of vertically banded gabbro (200 m thick) at the outer rim. The unlaminated syenite is intrusive into the gabbro and develops a thin (2 m) transition zone of syenodiorite at the contact. A traverse across the vertical transition zone and inwards towards the layered series was sampled with a portable drill. Mafic silicates (olivine, clinopyroxene, biotite) show inward evolution in Fe/(Fe+Mg) across the syenodiorite-unlaminated syenite zones. Feldspars change rapidly across the syenodiorite zone from rocks dominated by plagioclase, in some cases together with two alkali feldspars, one a mesoperthite or cryptomesoperthite, the other a cryptoperthite, to rocks in which plagioclase is seen only rarely as cores to cryptomesoperthitic alkali feldspar crystals. Plagioclase is absent from the layered series.Alkali feldspars occurring in pairs have bulk compositions on solvus isotherms in the Or-Ab-An ternary system, estimated at 950° C in a syenogabbro and 910° C in a syenodiorite, at 1 kbar. The more calcic liquids from which they crystallized fractionated on paths that intersected the two- feldspar surface, whereas the more syenitic members crystallized from liquids which terminated crystallization in the one- feldspar field at 900° C. Plagioclases evolve from calcic andesine in syenodiorites, to very rare sodic oligoclase in the most evolved unlaminated syenites. The boundaries between plagioclase cores and alkali feldspar rims, which are usually optically abrupt, involve complex mixed zones on the m -scale, consistent with arrested reaction between plagioclase primocrysts and crystallizing syenitic liquid. Ternary liquidus-solidus relationships are in qualitative agreement with this interpretation. The syenodiorites are cumulates produced during sidewall crystallization of a trachytic magma against a gabbroic chamberlining. This magma changed little in bulk composition as it evolved, giving rise to the unlaminated syenites by further sidewall crystallization. Water build- up in this liquid probably caused a change in style of chamber filling, giving rise to the layered series by bottom accumulation. Microtextures in the zoned feldspars are described in an accompanying paper.CRPG contribution 729  相似文献   

6.
Cryptoperthites from the Klokken layered syenite intrusion were examined by TEM to determine the role of exsolution, ordering and twinning in the development of the coherent microtextures during slow cooling, the stratigraphic position of the samples in the layered series giving an independent variable in determining their evolution. Both periodicity (primary and secondary) and morphology change with distance from the top of the series. Most samples contain low microcline in the diagonal association.Partial ordering occurred before exsolution, which was followed by Albite-twin formation in the albite lamellae. The twin periodicity depends on the average lamellar thickness (or on the primary lamellar periodicity, 1) and no longer changes during subsequent morphological evolution. In the Or-rich lamellae long-period Albite twins develop before waves form in the lamellar interface. The interfaces rotate with increasing order to give parallel-sided zig-zag lamellae of low microcline with Albite twinned lamellae of low albite, which may pinch and swell. Where the albite lamellae are discontinuous, adjacent microcline lamellae coalesce giving oblique lamellae and Pericline or M-type twins. Thickening of some oblique lamellae gives a distinct secondary periodicity, 2, which outlines lozenge-shaped areas with relics of the primary periodicity and, if coarse enough, is responsible for optically-visible braid microperthite. Coherency, demonstrated by high resolution images, is maintained through all stages of the coarsening.A time-temperature-transformation diagram for continuous cooling is presented and can be used to interpret the kinetics and morphological evolution of cryptoperthites from rocks with very different cooling rates (dykes and lavas to very large plutons), which have, however, similar primary lamellar periodicities. The finest periodicities are only slightly larger than the supposed initial periodicities ( o) for spinodal decomposition and little coarsening can have occurred. Coarsening at cooling rates slow enough to produce significant ordering may be much slower than coarsening in disordered feldspars. Primary coarsening may be stopped by the development of Albite twins in the Abrich phase, which will require reversal of the order-antiorder sense of parts of the framework. Coarsening may also be slowed if the phases at intermediate temperatures order at different rates or have different equilibrium degrees of Al-Si order. Secondary coarsening can develop at much lower temperatures (<400° C) on the formation of low microcline, when both phases have the same framework order.  相似文献   

7.
Intracrystal microtextures formed by a process of mutual replacement in alkali feldspars record fluid–rock reactions that have affected large volumes of the Earth’s crust. Regular, ≤1 μm-scale ‘strain-controlled’ perthitic microtextures coarsen, by up to 103, by a dissolution–reprecipitation process, producing microporous patch or vein perthites on scales >100 μm. We have developed earlier studies of such reactions in alkali feldspar cm-scale primocrysts in layered syenites from the Klokken intrusion, South Greenland. We present new hyperspectral CL, SEM images, and laser ICPMS analytical data, and discuss the mechanism of such replacement reactions. The feldspars grew as homogeneous sodic sanidines which unmixed and ordered by volume diffusion during cooling into the microcline field at ~450°C, giving regular, fully coherent ‘braid’ cryptoperthite. At ≤450°C the crystals reacted with a circulating post-magmatic aqueous fluid. The braid perthite behaved as a single reactant ‘phase’ which was replaced by two product phases, incoherent subgrains of low albite and microcline, with micropores at their boundaries. The driving force for the reactions was coherency strain energy, which was greater than the surface energy in the subgrain mosaic. The external euhedral crystal shapes and bulk major element composition of the primocrysts were unchanged but they became largely pseudomorphs composed of subgrains usually with the ‘pericline’ and ‘adularia’ habits (dominant {110} and subordinate {010} morphology) characteristic of low T growth. The subgrains have an epitactic relationship with parent braid perthite. Individual subgrains show oscillatory zoning in CL intensity, mainly at blue wavelengths, which correlates with tetrahedral Ti. Regular zoning is sometimes truncated by irregular, discordant surfaces suggesting dissolution, followed by resumption of growth giving regular zoning. Zones can be traced through touching subgrains, of both albite and microcline, for distances up to ~500 μm. At ≤340°C, the microcline subgrains underwent a third stage of unmixing to give straight lamellar film perthites with periodicities of ~1 μm, which with further cooling became semicoherent by the development of spaced misfit dislocations. Sub-grain growth occurred in fluid films that advanced through the elastically strained braid perthite crystals, which dissolved irreversibly. Braid perthite was more soluble than the strain-free subgrain mosaics which precipitated from the supersaturated solution. Some volumes of braid texture have sharp surfaces that suggest rapid dissolution along planes with low surface energies. Others have complex, diffuse boundaries that indicate a phase of coherent lamellar straightening by volume diffusion in response to strain relief close to a slowly advancing interface. Nucleation of strain-free subgrains was the overall rate-limiting step. To minimise surface energy subgrains grew with low energy morphologies and coarsened by grain growth, in fluid films whose trace element load (reflected in the oscillatory zoning) was dictated by the competitive advance of subgrains over a range of a few tens of mm. The cross-cutting dissolution surfaces suggest influxes of fresh fluid. Removal of feldspar to give 2 vol% porosity would require a feldspar:fluid ratio of ~1:26 (by wt). The late reversion to strain-controlled exsolution in microcline subgrains is consistent with loss of fluid above 340°C following depressurization of the intrusion. A second paper (Part II) describes trace element partitioning between the albite and microcline subgrains, and discusses the potential of trace elements as a low-T geothermometer. This paper and the Part II are dedicated in memory of J.V. Smith and W.L. Brown, both of whom died in 2007, in acknowledgement of their unrivalled contributions to the study of the feldspar minerals over more than half a century.  相似文献   

8.
Eight feldspar phases have been distinguished within individual alkali feldspar primocrysts in laminated syenite members of the layered syenite series of the Klokken intrusion. The processes leading to the formation of the first four phases have been described previously. The feldspars crystallized as homogeneous sodian sanidine and exsolved by spinodal decomposition, between 750 and 600 °C, depending on bulk composition, to give fully coherent, strain-controlled braid cryptoperthites with sub-μm periodicities. Below ~500 °C, in the microcline field, these underwent a process of partial mutual replacement in a deuteric fluid, producing coarse (up to mm scale), turbid, incoherent patch perthites. We here describe exsolution and replacement processes that occurred after patch perthite formation. Both Or- and Ab-rich patches underwent a new phase of coherent exsolution by volume diffusion. Or-rich patches began to exsolve albite lamellae by coherent nucleation in the range 460–340 °C, depending on patch composition, leading to film perthite with ≤1 μm periodicities. Below ~300 °C, misfit dislocation loops formed, which were subsequently enlarged to nanotunnels. Ab-rich patches (bulk composition ~Ab91Or1An8), in one sample, exsolved giving peristerite, with one strong modulation with a periodicity of ~17 nm and a pervasive tweed microtexture. The Ab-rich patches formed with metastable disorder below the peristerite solvus and intersected the peristerite conditional spinodal at ~450 °C. This is the first time peristerite has been imaged using TEM within any perthite, and the first time peristerite has been found in a relatively rapidly cooled geological environment. The lamellar periodicities of film perthite and peristerite are consistent with experimentally determined diffusion coefficients and a calculated cooling history of the intrusion. All the preceding textures were in places affected by a phase of replacement correlating with regions of extreme optical turbidity. We term this material ultra porous late feldspar (UPLF). It is composed predominantly of regions of microporous very Or-rich feldspar (mean Ab2.5Or97.4An0.1) associated with very pure porous albite (Ab97.0Or1.6An1.4) implying replacement below 170–90 °C, depending on degree of order. In TEM, UPLF has complex, irregular diffraction contrast similar to that previously associated with low-temperature albitization and diagenetic overgrowths. Replacement by UPLF seems to have been piecemeal in character. Ghost-like textural pseudomorphs of both braid and film parents occur. Formation of patch perthite, film perthite and peristerite occurred 104–105 year after emplacement, but there are no microtextural constraints on the age of UPLF formation.  相似文献   

9.
Braid microperthitic alkali feldspars in the Klokken, South Greenland and Coldwell, Ontario syenite intrusions have bulk-compositional variations along grain boundaries called pleated rims. These, together with vein microperthites in aplites which cross-cut the syenites, have been investigated by SEM and TEM. We distinguish two main types of pleated rims, “arched ” and “parallel-sided ”, consisting of alternating Ab- and Or-rich areas on (001), which are 0.5–300 μm in length normal to (010) and 0.2–20 μm in width along (010). The smallest pleats, which occur on intracrystalline boundaries in Klokken feldspars, are fully coherent and composed of low albite and low microcline. Above the heads of some of the coarser pleats, braid microperthite grades into a film crypto- and micro-perthite and antiperthite microtexture called a “transitional zone” containing roughly planar lamellae of low albite and tweed orthoclase. During pleat development, local alternating volumes form in which the proportions of the phases differ ( phase separation) and the morphology of the intergrowths changes from braided to straight in response to this change in local bulk composition. Straightening is also accompanied by transformation of low microcline to tweed orthoclase. The coarsest pleats, which occur along grain boundaries in feldspars from the Coldwell syenite, are semi- or in-coherent and have a thick coherent and semicoherent transitional zone. Coarsening of pleats and development of the transitional zone has been facilitated by diffusion of “water” into grain interiors. In many cases, pleated rims have suffered deuteric alteration, by dissolution–reprecipitation processes, through the action of a water-rich fluid from the grain boundary, in which tweed orthoclase was transformed into irregular microcline and micropores developed. Vein microperthites in aplites from Klokken, and by extension the vein microperthites almost universal in most alkali granites, are interpreted to have formed by propagation of pleat heads across entire crystals during pervasive interaction with water. Received: 10 June 1996 / Accepted: 12 December 1996  相似文献   

10.
The temperature dependence of cell parameters for three disordered, synthetic alkali feldspars (Or19, Or38, and Or100) has been determined up to 1,000 °C. The samples show no change in composition or degree of Si-Al disorder during the experiments. The triclinic-monoclinic inversion in the sample of composition Or19 occurs at 560 °±10 °C and is accompanied by changes in the rates of expansion of a, b and c; the rate for a increases and those for b and c decrease above the inversion. The b and c parameters in Or100 show small decreases with increasing temperature and this may be due to thermal motion effects causing a contraction of cell directions that are fully expanded at room temperature. Calculation of the thermal expansion ellipsoids for the monoclinic phases shows that the major expansion coefficients (1) for all three samples are more than an order of magnitude greater than the intermediate (2) and minor (3) coefficients. Thus the thermal expansion of these phases is dominated by that of 1 which makes an angle of 22 ± 4 ° with+a; this orientation is parallel to that of the short M-OA2 bonds. The thermal expansion mechanism for monoclinic, disordered alkali feldspars may involve tilting within the framework releasing compression along this direction and allowing the M-OA2 bonds to show high expansion rates. The stretching of the crankshaft units, which are parallel to a, may only play a subordinate role in controlling the expansion of the feldspar framework.  相似文献   

11.
Samples of essentially “dry” high-pressure felsic granulites from the Bohemian Massif (Variscan belt of Central Europe) contain up to 2-mm-large perthitic alkali feldspars with several generations of plagioclase precipitates in an orthoclase-rich host. The first generation takes the form of lenses homogeneous in size, whereas the size of a second generation of very thin albite-rich precipitates is more variable with comparatively high aspect ratios. In the vicinity of large kyanite, garnet or quartz inclusions, the first generation of plagioclase precipitates is significantly less abundant, the microstructure is coarser than in the remainder of the perthitic grain and the host is a tweed orthoclase. The first generation of precipitates formed at around 850 °C during the high-pressure stage (16–18 kbar) of metamorphism. Primary exsolution was followed by primary coarsening of the plagioclase precipitates, which still took place at high temperatures (850–700 °C). The coarsening was pronounced due to the access of fluids in the outer portions of the perthitic alkali feldspar and in more internal regions around large inclusions. The second generation of albite-rich precipitates was formed at around 570 °C. TEM investigations revealed that the interfaces between the second-generation plagioclase lamellae and the orthoclase-rich host are coherent or semi-coherent. During late evolutionary stages of the perthite, albite linings were formed at phase boundaries, and the perthitic microstructure was partially replaced by irregularly shaped precipitates of pure albite with incoherent interfaces. The albitization occurred below 400 °C and was linked to fluid infiltration in the course of deuteric alteration. Based on size-distribution analysis, it is inferred that the precipitates of the first generation were most probably formed by spinodal decomposition, whereas the precipitates of the second generation rather were formed by nucleation and growth.  相似文献   

12.
Late-crystallised interstitial alkali feldspars and a single epidote from selected Proterozoic dolerites in Sweden have higher initital 87Sr/86Sr ratios, (e.g., 0.709) than the early-crystallised minerals of the same rocks ( 0.704); anomalies in Rb and Sr concentrations are also noted. This radiogenically-enriched Sr must originate in the older host rocks of the intrusions. As the contaminated phases often occupy <1 % of the dolerite, only an aqueous fluid would have been capable of transporting the contamination through the 99% solid intrusions. Textural association of late feldspars with hydrous alteration products supports this interpretation. Feldspar structural data suggest that most dolerites have been affected by subsolidus aqueous fluids, causing extensive structural re-equilibration in interstitial K-feldspars, as well as occasional metasomatic effects. Anomalies in 87Sr developed only where the fluids interacted with host rocks.  相似文献   

13.
Charge contrast imaging in the scanning electron microscope can provide new insights into the scale and composition of alkali feldspar microtextures, and such information helps considerably with the interpretation of their geological histories and results of argon isotope thermochronological analyses. The effectiveness of this technique has been illustrated using potassium-rich alkali feldspars from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The constituent albite- and orthoclase-rich phases of both microperthite generations can be readily distinguished by atomic number contrast imaging. The charge contrast results additionally show that sub-micrometre-sized albite ‘platelets’ are commonplace between coarser exsolution lamellae and occur together to make cryptoperthites. Furthermore, charge contrast imaging reveals that the orthoclase-rich feldspar is an intergrowth of two phases, one that is featureless with uniform contrast and another that occurs as cross-cutting veins and grains with the {110} adularia habit. Transmission electron microscopy shows that the featureless feldspar is tweed orthoclase, whereas the veins and euhedral grains are composed of irregular microcline that has formed from orthoclase by ‘unzipping’ during deuteric or hydrothermal alteration. The charge contrast imaging results are especially important in demonstrating that deuteric perthites are far more abundant in alkali feldspars than would be concluded from investigations using conventional microscopy techniques. The unexpected presence of such a high volume of replacement products has significant implications for understanding the origins and geological histories of crustal rocks and the use of alkali feldspars in geo- and thermochronology. Whilst the precise properties of feldspars that generate contrast remain unclear, the similarity between charge contrast images and corresponding cathodoluminescence images of deuteric microperthites indicates that trace element chemistry and possibly also elastic strain within the crystal play a major role.  相似文献   

14.
Ivar B. Ramberg 《Lithos》1972,5(4):281-306
Three occurrences of braid perthite (lamellae parallel to (110) and ( )) and micro braid perthite (lamellae parallel to ( ) and ( )) from Permian nepheline syenite pegmatites in monzonite (larvikite) of the Oslo Graben are described. All the crystals studied show a zoned arrangement with either alternating mmacro- and microperthitic bands parallel to (010) or with microperthitic cores surrounded by macroperthite and a marginal zone of plagioclase. Both types of perthite are mesoperthitic and composed of maximum microcline and low albite. Chemical analyses suggest that the alkali feldspar is stoichiometric, while precession exposures imply unusual cell parameters in the host K-feldspar phase. The macroperthite seems to have crystallized at the expense of the microperthite. The braided texture of exsolved albite lamellae may be due to some kind of strain causing cracking along the prism and pyramidal planes.  相似文献   

15.
The microtextures developed during relatively slow cooling as a function of bulk composition in zoned ternary feldspars from syenodiorites and syenites in the Klokken intrusion, described in the preceding paper, were determined by TEM and their origin and evolution deduced. The feldspars normally have a plagioclase core and an alkali feldspar rim; cores become smaller and rims larger and the An content of both decrease with distance from the contact of the intrusion. The following microtextural sequence was observed. The inner plagioclase cores are homogeneous oligoclase-andesine with Albite growth twins only, but are crypto-antiperthitic towards the outer core. At first small platelets of low sanidine a few nanometres thick and up to 10 nm long occur sporadically only on Albite-twin composition planes. With further increase in bulk Or they are homogeneously distributed in the plagioclase. Thicker, through-going plates in platelet-free areas are found, which induce Albite twins in the surrounding plagioclase. The microtextures in the rims are regular cryptomesoperthitic, with (¯601) lenses or lamellae, depending on the bulk Or-content, of low sanidine in Albite-twinned low oligoclase-andesine. Albite and Pericline twins in plagioclase in an M-twin relationship, together with lenticular low sanidine, were found in only one small area. The overall diffraction symmetry of the mesoperthites is monoclinic, showing that exsolution started in a monoclinic feldspar, whereas that of the antiperthites is triclinic. The intermediate zone between the core and rim is more complex and microtextures vary over distances of a few micrometres.The cryptomesoperthites are very regular where Or-rich and probably arose by spinodal decomposition. The platelets in the outer cores arose by heterogeneous nucleation on twin composition planes and by homogeneous nucleation elsewhere. Near the intermediate zone they coarsened to give larger plates which induced Albite-twins in the plagioclase. Because of the zoning, microtextures that were initiated in areas of given composition, can propagate laterally into zones of different composition. A diagram is given showing the relationship between ternary bulk composition and the microtexture developed in coherent perthitic alkali feldspars and plagioclases from slowly-cooled rocks.CRPG contribution 730  相似文献   

16.
In the alkali feldspars of the amphibolite- and granulite-facies rocks of Sri Lanka, a late-stage, final exsolution event is observed which produced film lamellae and fine-scale spindles. These were investigated by optical, microprobe, single-crystal, transmission electron microscopy and atomic resolution microscopy techniques. The lamellae and spindles exsolved below the coherent solvus at temperatures as low as 300 to 350° C. Precession photographs and ARM micrographs show that the intergrowth is perfectly coherent. In sections (010) the rhombic section of the Pericline twins corresponds to analbite or high albite. The albite lamellae and spindles nucleated and grew at low temperatures in a metastable disordered structural state within a tweed-orthoclase matrix and became periodically twinned analbite or high albite, which subsequently developed only a slight increase in Al, Si order. The relationship between twin periodicity and lamellar width, predicted for coherent intergrowths by Willaime and Gandais (1972), is obeyed. In Or-rich grains, in which coherent exsolution is the only exsolution event, the film lamellae tend to be restricted to the rim, the fine-scale spindles to the centre of the grains. The films nucleated heterogeneously at grain boundaries and grew towards the grain centres. Fine-scale spindles probably nucleated homogeneously in the interior part of grains. Heterogeneous nucleation and coherent growth are not mutually exclusive.  相似文献   

17.
Coexisting feldspars from across 2,000 km2 of the granulite facies Oaxacan Complex, southern Mexico exhibit variable amounts of solid solution from nearly binary (Ab-An and Ab-Or) to substantially ternary (Ab-An-Or). Reintegrated analyses of 21 coarsely exsolved perthite (AF)-plagioclase (PL) pairs yield AF=Or30–63 Ab30–56An2–15 and PL=Or1–2Ab70–84An11–28. These data have been used to test existing two feldspar geothermometers for this extended composition range.For all compositions, temperature estimates show relatively little spread in value (660° to 795° C, 7 kbar) using the Haselton et al. (1983) calibration (HHHR). These temperatures are in fair agreement with estimates of 750±40° C for feldspar pairs with nearly binary compositions using the Stormer (1975) thermometer (STO). However, STO temperatures increase significantly (to 990° C) with increasing ternary solid solution in AF, suggesting that thermometers derived for binary systems are inaccurate for ternary compositions. Isotherms drawn from HHHR which take into account variable anorthite solution in alkali feldspar show that estimated temperature decreased by 50–100° C for each 5 mole percent anorthite in alkali feldspar.Experimentally determined solvus relations (Seck 1971) require feldspars with significant ternary solid solution to have crystallized or to have equilibrated at higher temperature than feldspars with more binary compositions. However, petrographic and field relations of ternary and binary feldspars in the Oaxacan Complex suggest they were all equilibrated at similar metamorphic pressures and temperatures and do not support a model where ternary feldspars have preserved higher premetamorphic temperatures. The composition of coexisting feldspars from other Precambrian granulite-facies terranes are also inconsistent with Seck's (1971) results. Hence, thermometers which fit Seck's solvus relations may not yield accurate temperatures in high grade metamorphic terranes. Parallel tie-lines for ternary and binary feldspars in the Oaxacan Complex and the consistency of inferred temperatures (HHHR) for many granulite terranes suggest that estimation of temperature using tie-line slopes rather than solvus width may yield more accurate results for these samples.Peak metamorphic conditions in the Oaxacan Complex are inferred to have been 730±50° C, 7±1 kbar. Pressure estimates from four garnet-plagioclase barometers show good agreement. Results of feldspar thermometry are consistent with diopside-forsterite equilibria in marbles which restrict T=720–765° C at P=7 kbar.  相似文献   

18.
Alkali feldspar cleavage fragments from the Klokken layered syenite, South Greenland, were heated to 700°C at 0.1 GPa in 99% H2 18O for 75 h. These samples were then polished and imaged by ion microprobe for 18O. The feldspars were known to contain areas of pristine, braid micro-perthite which were not turbid and areas of deuteric patch perthite which were turbid. Turbidity is related to the presence of micropores in the feldspars. On imaging the grain, it was found that the 18O had penetrated into the parts of the grain which were microporous and not into the pristine areas. Micropores are therefore responsible for rendering the feldspars permeable as well as porous. The implications of micropermeable feldspars in several areas of geology are discussed.  相似文献   

19.
A single-crystal x-ray study of alkali feldspars of bulk composition Or39–43 and Or62–64, from a single cooling unit of Battleship Rock Tuff, northern New Mexico, reveals a trend of decreasing degree of exsolution, from the non-welded zone toward the densely welded center of the cooling unit. Crystals of bulk composition Or62–64 range from cryptoperthite with both phases monoclinic in the nonwelded zone to virtually unexsolved crystals in the welded center of the cooling unit. Crystals of bulk composition Or39–43 include crytpoperthites with both phases monoclinic, and cryptoperthites with Pericline-twinned sodic lamellae, with * of the sodic phase increasing systematically from 87.3° in the nonwelded zone to 90° in the densely welded zone. Composition estimates based on unitcell parameters show decreasing compositional differences between coexisting lamellae toward the welded zone. The feldspar crystals studied are interpreted to be xenocrysts, which had undergone exsolution prior to incorporation in the erupting magma, and which were then partially homogenized during emplacement and post-emplacement cooling. The data indicate a maximum re-equilibration temperature of the feldspars of about 500° C, and a more rapid cooling of the tuff than calculated for simple conduction in a uniform slab.  相似文献   

20.
The bulk compositions of the groundmass alkali feldspar from the Hell Canyon Pluton is 0.146mole% albite. The composition of the outermost zone of the oscillatory zoned plagioclase is 0.686 mole% albite, whereas the most calcic cores have a composition of 0.43 mole% albite. The structural state of the alkali feldspar is near orthoclase. Both composition of coexisting feldspars and structural state of the alkali feldspar are nearly constant throughout the pluton.Exsolved albite in the alkali feldspar have a composition of 0.965 mole% albite and the orthoclase host has a composition of 0.032 mole%. Singe crystal X-ray studies indicate that the albite intergrowths are coherent with the host.Equilibrium temperatures derived from the coexisting feldspar average 554 ° C; about 150 ° C, too low for the minimum solidus temperatures for reasonable emplacement pressures (2 kb). If this minimum solidus temperature is assumed, then the alkali feldspar has lost about 0.15 mole% albite. This loss was most likely caused by hydrothermal solutions associated with the crystallizing magma and equilibrated at about 550 ° C. However, based on the coherent albite intergrowths and the orthoclase structure state it can be inferred that the system was relatively free of volatiles below 500 ° C. Final equilibirium between orthoclase host and albite intergrowths occurred at about 311 ° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号