首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ophiolites in different tectonic settings are underlain and overlain by characteristic rock units which bear similar relationships to each other and to the ophiolite. Consideration of these relationships in three settings, an active arc (Burma), a continental margin (Oman) and an island ridge-basin system (Cyprus) suggests that in all three settings they resulted from ophiolite detachment at a spreading ridge in a narrow oceanic basin with passive margins. In Burma and possibly in Oman and Cyprus, detachment was related to regional compressive stress associated with an earlier collision. Following detachment and loss of the spreading system, perhaps accompanied by deposition of stratiform sulphides, the rock relationships can be explained by subduction of the remnant oceanic basin beneath the ophiolite forming an island arc, accretion of continent-derived turbidites in front of and beneath the ophiolite, and collision of the ophiolite and overlying volcanic arc with a passive continental margin. Subsequent collision-related events include emplacement of serpentinite diapirs, rise of mud matrix melange and its extrusion as debris flows, elevation of a foreland ridge, and subsidence of a basin on the internal side of the ridge. In Taiwan, olistostromes with local ophiolite clasts in the Lichi mélange could be explained as debris flows of extruded mud-matrix mélange diapirs, generated by tectonic burial of wet sediments during collision-related back-thrusting.  相似文献   

2.
Oman has two ophiolites – the better known late Cretaceous northern Oman (or Semail) ophiolite and the lesser known and smaller, Jurassic Masirah ophiolite located on the eastern coast of the country adjacent to the Indian Ocean. A number of geological, geochronological and geochemical lines of evidence strongly suggest that the northern Oman ophiolite did not form at a mid-ocean ridge but rather in a supra-subduction zone setting by fast spreading during subduction initiation. In contrast the Masirah ophiolite is structurally part of a series of ophiolite nappes which are rooted in the Indian Ocean floor. There are significant geochemical differences between the Masirah and northern Oman ophiolites and none of the supra-subduction features typical of the northern Oman ophiolite are found at Masirah. Geochemically Masirah is MORB, although in detail it contains both enriched and depleted MORB reflecting a complex source for the lavas and dykes. The enrichment of this source predates the formation of the ophiolite. The condensed crustal section on Masirah (ca. 2 km) contains a very thin gabbro sequence and is thought to reflect its genesis from a cool mantle source associated with the early stages of sea-floor spreading during the early separation of eastern and western Gondwana. These data suggest that the Masirah ophiolite is a suitable analogue for an ophiolite created at a mid-ocean ridge, whereas the northern Oman ophiolite is not. The stratigraphic history of the Masirah ophiolite shows that it remained a part of the oceanic crust for ca. 80 Ma. The chemical variability and enrichment of the Masirah lavas is similar to that found elsewhere in Indian Ocean basalts and may simply reflect a similar provenance rather than a feature fundamental to the formation of the ophiolite.  相似文献   

3.
For the first time, the crystallized remnant of an oceanic ridge magma chamber is documented in the Oman ophiolite. It exists in the centre of a 40 km long monoclinal ridge (Jebel Dihm, Wadi Tayin massif), exposing a full crustal section perpendicular to the spreading direction. New detailed mapping supported by U‐Pb zircon geochronology suggests that the active, fast‐spreading ridge that died just prior to detachment of the ophiolite is preserved and largely intact. Our observations provide insights into the crystallizing mush zone of a magma chamber, before it crosses the external walls and solidifies as deformed gabbros. Our data provide new constraints on the shape and internal dynamics of a magma chamber, including gabbro subsidence from the floor of a perched melt lens and the limited contribution of sills to crustal accretion. By locating precisely the palaeo‐ridge axis, prior full spreading rate estimates can be increased to ~140 km Ma?1.  相似文献   

4.
Following the discovery of a high temperature (HT) (∼800 °C) and a very high temperature (1000 °C) hydrothermal alteration in the crust of the Oman ophiolite, a systematic structural and petrological study was conducted throughout the entire ophiolite, with supporting isotopic geochemistry. The published results showed that the crustal gabbros are extensively altered down to Moho by a large seawater flux, which was channelled through an identified recharge and discharge circuit. Microcracks, constituting the recharge system, propagated through the hot gabbros, accreting at the ridge and, in spite of their submillimetre width, provided the conduit for the large volume of seawater necessary for the observed alteration. Building on these results, we show here that these microcracks opened and were active over a time of a few tens of thousands years, while the newly accreted gabbros were drifting away from the ridge. Microcrack activity was highly episodic, with bursts of seawater ingression lasting a few days to a few weeks, followed by quiescence periods of a few tens of years. This model of HT, oceanic hydrothermal alteration has several implications concerning fast spreading oceanic ridges.  相似文献   

5.
The geodynamic setting of the Xigaze ophiolite has long been debated. Structural and geochemical evidence suggest the Xigaze ophiolite was formed at a slow‐spreading ridge (Nicolas et al., 1981; Liu et al., 2016). Based on incompatible element concentrations, the Xigaze ophiolite volcanics are consistent with the ubiquitous subduction signature in suprasubduction zone (Bedard et al., 2009; Hebert et al., 2012; Dai et al., 2013). It is noteworthy that the Xigaze ophiolite is different from the Geotimes and Lasail and Velly units from Oman ophiolite, respectively. The mafic rocks of the Xigaze ophiolite generally resemble typical N‐MORB and Geotimes volcanics in composition except for slight depletions of Th and Nb (Fig.1a). Although the Xigaze rocks have similar Th and Nb concentrations to Lasail and Velly rocks, most incompatible elements in the Xigaze rocks are comparable to N‐MORB. Petrography in gabbro of Xigaze ophiolite shows that euhedral plagioclases are enclosed by clinopyroxenes suggesting that these minerals have crystallized from an anhydrous magma (Sisson and Grove, 1993). Although the Xigaze volcanic rocks are slightly depleted in Th and Nb, they have MORB‐like trace element characteristics implying that they are derived from an anhydrous MORB magma at spreading centre. Godard et al. (2006) suggested that the mantle source of the Oman ophiolite have element and isotopic characteristics similar to Indian Ocean MORB, where the mantle preserved some older slab materials. A negative Nb anomaly of Oman Geotimes volcanic rocks may be resulted from contamination of the slab materials via decompression melting of the convecting mantle. Moreover, the Xigaze rocks have 1.27–3.18 of (Th/Nb)N ratios similar with those of Geotimes volcanics ((Th/Nb)N =0.51–2.77) and lower than those of Lasail and Velly units ((Th/Nb)N =2.12–6.35). These features suggest that the Xigaze ophiolite may have formed at the spreading centre.  相似文献   

6.
The Oman–United Arab Emirates ophiolite is the world’s largest ophiolite. It is divided into 12 separate fault-bounded blocks, of which the northern three lie wholly or partly in the United Arab Emirates. Extensive mapping has shown that the United Arab Emirates blocks contain mantle and crustal sections which correspond to the classic ‘Penrose conference’ ophiolite definition but which are cut by a voluminous later magmatic sequence including ultramafic, mafic and felsic components. Samples from the later magmatic sequence are dated at 96.4?±?0.3, 95.74?±?0.3 and 95.2?±?0.3 Ma; the early crustal section, which has not been dated directly, is thus constrained to be older than c. 96.4 Ma. Petrological evidence shows that the early crustal section formed at a spreading ridge, but the later magmatic sequence was formed from hydrous magmas that produced different mineral crystallisation sequences to normal mid-ocean ridge basalt (MORB). Mineral and whole-rock geochemical analyses show that the early crustal rocks are chemically similar to MORB, but the later magmatic sequence has chemical features typically found in supra-subduction zone (SSZ) settings. The ophiolite in the United Arab Emirates thus preserves clear evidence for two stages of magmatism, an early episode formed at a spreading centre and a later episode associated with the onset of subduction. Similar two-stage magmatism has been recognised in the Oman sector, but the United Arab Emirates contains the most voluminous SSZ magmatism yet described from this ophiolite.  相似文献   

7.
The Late Ordovician Solund-Stavfjord ophiolite in western Norway represents a remnant of the Iapetus oceanic lithosphere that developed in a Caledonian marginal basin. The ophiolite contains three structural domains that display distinctively different crustal architecture that reflects the mode and nature of magmatic and tectonic processes operated during the multi-stage seafloor spreading evolution of this marginal basin. Domain I includes, from top to bottom, an extensive extrusive sequence, a transition zone consisting of dike swarms with screens of pillow breccias, a sheeted dike complex, and plutonic rocks composed mainly of isotropic gabbro and microgabbro. Extrusive rocks include pillow lavas, pillow breccias, and massive sheet flows and are locally sheared and mineralized, containing epidosites, sulfide-sulfate deposits, Fe-oxides, and anhydrite veins, reminiscent of hydrothermal alteration zones on the seafloor along modern mid-ocean ridges. A fossil lava lake in the northern part of the ophiolite consists of a >65-m-thick volcanic sequence composed of a number of separate massive lava units interlayered with pillow lavas and pillow breccia horizons. The NE-trending sheeted dike complex contains multiple intrusions of metabasaltic dikes with one- and two-sided chilled margins and displays a network of both dike-parallel normal and dike-perpendicular oblique-slip faults of oceanic origin. The dike-gabbro boundary is mutually intrusive and represents the root zone of the sheeted dike complex. The internal architecture and rock types of Domain I are analogous to those of intermediate-spreading oceanic crust at modern mid-ocean ridge environments. The ophiolitic units in Domain II include mainly sheeted dikes and plutonic rocks with a general NW structural grain and are commonly faulted against each other, although primary intrusive relations between the sheeted dikes and the gabbros are locally well preserved. The exposures of this domain occur only in the northern and southern parts of the ophiolite complex and are separated by the ENE-trending Domain III, in which isotropic to pegmatitic gabbros and dike swarms are plastically deformed along ENE-striking sinistral shear zones. These shear zones, which locally include fault slivers of serpentinite intrusions, are crosscut by N20°E-striking undeformed basaltic dike swarms that contain xenoliths of gabbroic material. The NW-trending sheeted dike complex in the northern part of Domain II curves into an ENE orientation approaching Domain III in the south. The anomalous nature of deformed crust in Domain III is interpreted to have developed within an oceanic fracture zone or transform fault boundary.REE chemistry of representative extrusive and dike rocks from all three domains indicates N- to E-MORB affinities of their magmas with high Th/Ta ratios that are characteristic of subduction zone environments. The magmatic evolution of Domain I encompasses closed-system fractional crystallization of high-Mg basaltic magmas in small ephemeral chambers, which gradually interconnected to form large chambers in which mixing of primary magmas with more evolved and fractionated magma caused resetting of magma compositions through time. The compositional range from high-Mg basalts to ferrobasalts within Domain I is reminiscent of modern propagating rift basalts. We interpret the NE-trending Domain I as a remnant of an intermediate-spread rift system that propagated northeastwards (in present coordinate system) into a pre-existing oceanic crust, which was developed along the NW-trending doomed rift (Domain II) in the marginal basin. The N20°E dikes laterally intruding into the anomalous oceanic crust in Domain III represent the tip of the rift propagator. The inferred propagating rift tectonics of the Solund-Stavfjord ophiolite is similar to the evolutionary history of the modern Lau back-arc basin in the SW Pacific and suggests a complex magmatic evolution of the Caledonian marginal basin via multi-stage seafloor spreading tectonics.  相似文献   

8.
The Oman‐Emirates is the largest and best‐exposed ophiolite; consequently, it has attracted significant interest among scientists, together with serious conflicts. Most geologists regard this ophiolite as having formed in an intra‐oceanic subduction zone before being accreted to the Arabian continent. Here, we propose an alternative scenario, supported by detailed field observations and integrated geophysics. The smaller Emirates part of the ophiolite was forced into a nearby continent, in the pre‐collision stage of Tethyan closure. The contraction led to the exhumation of the mantle floor of segmented basins accreted in a rifted system similar to the present‐day Gulf of California. The implied high temperature–high pressure metamorphism and the range of geochemical signatures were introduced during the process of rifting, whereas the larger Oman ophiolite was emplaced by obduction onto and along the subducting continental shore. This Ridge–Trench–Transform system might call for a new process to obduct over continents in particular Tethyan ophiolites.  相似文献   

9.
Nature of the Moho Transition Zone in the Oman Ophiolite   总被引:5,自引:2,他引:5  
The Moho Transition zone of ophiolites is dominantly composedof dunite, with various types of segregations (gabbros, pyroxenites,and chromitites). Representing a level of magmatic exchangebetween asthenospheric mantle and the constructing ocean crust,it records active melt circulation below a spreading ridge axisand offers the opportunity of observing the distribution ofmelt locally percolating and ponding in a deforming porous matrix.In the Oman ophiolite, the Moho Transition Zone has a thicknessvarying from ten to hundreds of meters; its thickness and compositionare related to the geometry of the asthenospheric mantle flow:thick Moho Transition Zones are on top of mantle diapirs characterizedby vertical flow, whereas thin Moho Transition Zones are presentin areas of horizontal mantle flow. A large high-temperatureplastic strain is recorded in thin Moho Transition zones, incontrast to thick ones where the strain is weaker and heterogeneous.Thick Moho Transition Zones display an intense magmatic activityexpressed by diffuse melt impregnations, dikes and sills. Inthese thick zones, we have studied the geometry of the meltcirculation at various scales. We present here the analysisof textures and lattice fabrics which record high-temperatureplastic strain and allow us to quantify it Melt circulates withinthe dunites and can locally destroy the solid framework, inrelation to a viscosity drop and the sharp overturn of mantleflow observed in this type of transition zone. KEY WORDS: Oman; ophiolite; Moho Transition Zone; textures *Corresponding author  相似文献   

10.
A detailed study in Wadi Farah reveals a singular point in Jebel Dihm (southern Oman ophiolite). Here, we investigated some primitive features of accretion at a fast‐spreading ridge that has exceptionally been exempt from hydrous alteration while crossing the TBL (thermal boundary layer). The conjunction of two factors has made this possible in the Farah area: its location at the point of sharp foliation rotation from the upper to the transitional gabbros and a locally twisted TBL. These factors may have favoured the intrusion within the TBL of hydrous wedges transverse to the ridge. Deeper into the TBL, near the active ridge, the wedges merge and are covered by veneers of totally fresh gabbros bearing glittering acicular clinopyroxene. These gabbros are interpreted as relics of the crystallizing internal wall of the magma chamber that have interacted with hydrous fluids. This internal TBL has anisotropic thermal properties and acts as a thermal blanket, maintaining high magma‐chamber temperatures.  相似文献   

11.
The Akamas ophiolite is shown to be a distal, off-axis extension of the main outcrop of Cretaceous ophiolite in the Troodos complex of Cyprus. Mantle-sequence harzburgites of both ophiolites share similarly oriented mantle-flow fabrics and the same Tertiary magnetizations acquired during exhumation. However, compared with the Troodos mantle sequence rocks, the Akamas ferromagnetic mineralogy is more oxidized and remanences with lower blocking temperatures were acquired chemically. Paleopoles calculated from published vectors and our own new data define an apparent polar wander path (APWP) for the Troodos microplate. The APWP shows that between 88 and 50 Ma the Troodos microplate was equatorial and the vertical axis for its 60° anticlockwise rotation was located within the microplate. Subsequently, the microplate drifted northward to 34°N with minor anticlockwise rotation at a reduced rate. That requires microplate-rotation about a vertical axis located to the west of Cyprus in the last 50 Ma. The allochthonous Triassic Mamonia terrane docked with the Cretaceous Troodos terrane in SW Cyprus. Within it, disrupted tectonized ophiolite has been regarded as part of a Triassic ocean floor or as sheared fragments of Cretaceous Troodos ophiolite, incorporated into the Mamonia terrane when it docked with the Troodos terrane. Whatever their provenance, their paleomagnetic signals postdate their penetrative deformation and metamorphism and their paleopoles may still be used to track their post-strain motion. Our calculations of paleopoles from published vectors for the Mamonia terrane smear along an extension of the APWP for the Troodos microplate that is, moreover, concentric with the Troodos microplate. This suggests that the paleopole dispersion of the Triassic Mamonia rocks and their post-magnetization disruption occurred during their accretion onto the anticlockwise-spinning Troodos microplate.  相似文献   

12.
The Oman ophiolite is probably the best preserved and best exposed ophiolite in the world. It forms a range of mountains on the northern coast of Oman which in places rise to over 2000 m and provide three‐dimensional exposure over a distance of about 450 km. Oman is well developed with a good network of tar roads, so that access is relatively easy and the semi‐arid climate means that exposure is excellent. Further, the Oman ophiolite has been intensively studied since the 1970s and there are a large number of maps and published works describing the geology.  相似文献   

13.
Some allochthonous terranes form along active continental margins when slivers of forearc crust (or more extensive crust) are displaced along arc-parallel strike-slip faults. Such faults can be generated or reactivated in response to either oblique subduction or ridge collision (collision between an oceanic spreading ridge and the leading edge of the forearc). The mechanical and thermal effects of ridge collision are important factors in the origin crustal development of some forearc sliver terranes. Some of the effects of ridge collision are well illustrated in the South American forearc near the Chile triple junction (46° S) where the Chile Rise is colliding today. Impingement of the Chile Rise, in conjuction with oblique subduction, has caused an elongate forearc sliver terrane to move northward away from an extensional zone at the collision site. The terrane is bounded on the east by the arc-parallel Liquiñe-Ofqui fault system (LOF) which coincides roughly with the forearc-arc boundary, and on the south by the Golfo de Penas extensional basin. Fault fabrics, recent seismicity, and paleomagnetic results indicate a component of right-lateral strike-slip movement on the LOF. Neotectonic geomorphology and pre- and post-seismic vertical strain data from the 1960 Concepcíon earthquake indicate a west-down dip-slip component of movement. Three-dimensional finite element models of ridge collision in this region substantiate these shear strains and development of an arc-parallel fault at about 150–200 km from the trench.Development of the forearc crust during Miocene and younger collision also involved intrusion of silicic magmas and emplacement of the Pliocene(?) Taitao ophiolite within about 15 km of the trench. The ophiolite and the silicic magmas constitute anomalous additions to the forearc crust, and record tectonic events leading to the origin of the allochthonous terrane carrying them. Similar ophiolite/silicic plutonic associations may help unravel the origin of other allochthonous terranes.  相似文献   

14.
A comprehensive model for the activity of the elementary accretion segment at fast‐spreading ridges relies on integration of structural data from the Oman ophiolite and geophysical results from the East Pacific Rise (EPR) around 9°N, which are of comparable size and spreading rates. The axial melt lens at shallow crustal level provides a link between Deval segmentation at the seafloor and a lower melt sill at Moho level, imaged at the EPR as a crustal melt zone (CMZ) and mapped in Oman as the Moho transition zone (MTZ). Both are attached to a mantle upwelling at the EPR, and to a frozen diapir in Oman. The physical link between diapiric mantle uprising at the Moho and Devals segmentation at the seafloor is the melt being injected from the mantle into the lower MTZ, ponding there, and then being released by powerful injections into the upper melt lens. The magma chamber covers the diapir at a distance of 5 km from the ridge axis.  相似文献   

15.
 In Oman, the convergence between Arabia and Eurasia resulted in the Late Cretaceous overthrusting of oceanic crust and mantle lithosphere onto the Arabian continental margin. During this compressional event, a part of the continental plate was subducted to a depth of more than 60 km (0.5 GPa, 250–350  °C to more than 2.0 GPa, 550  °C) resulting in progressive metamorphism of the continental margin sediments, well exposed in the Saih Hatat tectonic window, northeastern Oman Mountains. We attempt to constrain the possibility of one continuous history of extension (starting along the east Arabian continental margin in the Permian) that was followed by one continuous history of convergence starting at 90 Ma near a dead oceanic ridge. This compression resulted in the observed progressive metamorphism by ophiolite overthrusting onto the continental margin. Constraining arguments are the palaeogeographic setting before ophiolite obduction of the As Sifah units and the Hawasina Complex near Ghurba. Detrital chromites in the Triassic–Cretaceous metasediments of the Hawasina Complex are compared with magmatic Semail chromites, and the whole-rock chemistry of these metasediments and associated metabasites are investigated. In contrast to former hypotheses, differences in the chemical composition between detrital and magmatic chromites, and the probable origin of all detrital chromites in the Hawasina Basin from Permian age oceanic rocks, suggest that the high-pressure metamorphic sediments of As Sifah can be considered as part of the basal deposits of the Hawasina Basin. Received: 1 September 1998 / Accepted: 18 January 1999  相似文献   

16.
新疆西准噶尔地区是古生代经过俯冲-增生形成的复合造山带,该地区分布有多条蛇绿岩带,其中之一的西准噶尔达拉布特蛇绿岩被认为是最大的一条蛇绿岩带,可能代表了古亚洲洋壳的残余。本文的资料显示蛇绿岩带内的镁铁质岩呈现出N-MORB、E-MORB和似OIB的地球化学特征,通过对阿克巴斯套岩体中的浅色辉长岩LA-ICP-MS锆石年龄测定,获得达拉布特蛇绿岩E-MORB型镁铁质岩的年龄为302±1.7Ma。鉴于达拉布特蛇绿岩中E-MORB和似OIB型镁铁质岩成因的复杂性,结合前人研究成果,对辉长岩锆石U-Pb年龄所代表的意义存在两种可能性:(1)E-MORB型和似OIB型镁铁质岩可能是弧后盆地扩张后期的产物,代表蛇绿岩的年龄,其表明西准噶尔地区可能晚石炭纪还有洋盆存在;(2)E-MORB型镁铁质岩是蛇绿岩消亡阶段由于扩张脊和俯冲带碰撞作用而形成的弧前海山,形成时代晚于达拉布特主体蛇绿岩,但其成因与蛇绿岩的演化密切相关。本文侵向于第二种可能性,认为新疆北部晚石炭-早二叠可能仍存在活动陆缘,俯冲作用仍然存在,扩张脊俯冲形成的板片窗效应导致地幔楔、俯冲板片和沉积物等熔融促使基性岩浆向长英质酸性岩浆转变,从而引发了二叠纪大规模玄武质岩浆底侵,导致了该时期的构造-岩浆-成矿-造山作用的发生。  相似文献   

17.
Mantle peridotites predominate over the 130–120 Ma mafic rocks, which have a limited temporal interval. This characteristic distinguishes the ophiolite outcrops along the Yarlung Zangbo Sutrue Zone (YZSZ) in southern Tibet from more typical ophiolites, such as the Oman ophiolite. Here we present new structural field observations and identify the low‐angle detachment faults of the Xigaze ophiolite. We demonstrate that the extension associated with the detachment system was accommodated by accretion of mafic magma rather than by thinning and dismemberment. U‐Pb zircon ages from three groups of mafic intrusives closely related to the detachment faults show that the detachment system was initiated at ~126 Ma and ceased at ~123 Ma. A detailed study of the entire Xigaze ophiolite assemblage reveals that the ophiolite formed in situ at the southern margin of the Eurasian Plate, instead of being formed from fragments of tectonic slices.  相似文献   

18.
商州蛇绿岩带与晋宁运动   总被引:1,自引:0,他引:1  
商州蛇绿岩带具有完善的蛇绿岩套岩石组合;细碧岩与堆晶岩系渡型洋中脊玄武岩地球化化学特征。  相似文献   

19.
A systematic search for evidence of high-temperature hydrousalteration within the gabbros of the Samail ophiolite (Oman)shows that most of the gabbros have been affected by successivestages of alteration, starting above 975°C and ending below500°C. Sr and O isotopic analyses provide constraints onthe nature and origin of the fluids associated with these alterationevents. Massive gabbros, dykes and veins and their associatedminerals depart from mid-ocean ridge basalt (MORB)-source magmasignatures (87Sr/86Sr >0·7032 and depleted  相似文献   

20.
The late Eocene to Neogene tectonic evolution of the Dinarides is characterised by shortening and orogen-parallel wrenching superposed on the late Cretaceous and Eocene double-vergent orogenic system. The Central Dinarides exposes NW-trending tectonic units, which were transported towards the Adria/Apulian microcontinent during late Cretaceous–Palaeogene times. These units were also affected by subsequent processes of late Palaeogene to Neogene shortening, Neogene extension and subsidence of intramontane sedimentary basins and Pliocene–Quaternary surface uplift and denudation. The intramontane basins likely relate to formation of the Pannonian basin. Major dextral SE-trending strike-slip faults are mostly parallel to boundaries of major tectonic units and suggest dextral orogen-parallel wrenching of the whole Central Dinarides during the Neogene indentation of the Apulian microplate into the Alps and back-arc type extension in the Pannonian basin. These fault systems have been evaluated with the standard palaeostress techniques. We report four palaeostress tensor groups, which are tentatively ordered in a succession from oldest to youngest: (1) Palaeostress tensor group 1 (D1) of likely late Eocene age indicates E–W shortening accommodated by reverse and strike-slip faults. (2) Palaeostress tensor group 2 (D2) comprises N/NW-trending dextral and W/WSW-trending sinistral strike-slip faults, as well as WNW-striking reverse faults. These indicate NE–SW contraction and subordinate NW–SE extension related to Oligocene to early Miocene shortening of the Dinaric orogenic wedge. (3) Palaeostress tensor group 3a (D3a) comprises mainly NW-trending normal faults, which indicate early/middle Miocene NE–SW extension related to syn-rift extension in the Pannonian basin. The subsequent palaeostress tensor group 3b (D3b) includes NE-trending, SE-dipping normal faults indicating NW–SE extension, which is likely related to further extension in the Pannonian basin. (4) Palaeostress tensor group 4 (D4) is characterised by mainly NW-trending dextral and NE-trending sinistral strike-slip faults. Together, with some E-trending reverse faults, they indicate roughly N–S shortening and dextral wrenching during late Miocene to Quaternary. This is partly consistent with the present-day kinematics, with motion of the Adriatic microplate constrained by GPS data and earthquake focal mechanisms. The north–north-westward motion and counterclockwise rotation of the Adriatic microplate significantly contribute the shortening and present-day wrenching in the Central Dinarides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号