首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A relatively large submarine slide (slump block) and apparent unstable surficial sediments undergoing creep have been delineated in bathymetric and seismic reflection profiles along the U.S. Atlantic continental margin northeast of Wilmington Canyon. A downslope core transect was made over selected areas to assess the geotechnical properties of the sediments associated with the slide. Sediments are predominantly silty clays and clayey silts rich in illite, with lesser quantities of feldspar, kaolinite, chlorite, quartz, and smectite minerals. Surficial sediments (cored up to 12 m) upslope from the slump block reveal typical variations in the mass physical properties with core depth. Shear strength and wet unit weight show a steady increase with depth below the mudline commensurate with a decrease in water content. In contrast, surficial sediments downslope overlying the slump block generally have low shear strength and relatively high variability in other mass physical properties with core depth. Chemical evidence of slumping (as defined by the sulfate ion content) is not apparent in the pore waters collected from the upper 10 m of sediment. No important relationships are obvious among the physical and chemical properties, specifically the carbonates or complex solids of iron and manganese oxides or hydroxides. Sediment failure in the form of a major submarine slide appears to have been a significant deformational process during the geological past (late Pleistocene). Creep and associated deformational features recorded in the surficial sediments are presumably a result of recent geological processes.  相似文献   

2.
Abstract

The advanced piston cover (APC) has been used by the Ocean Drilling Program since 1985 for recovering soft sediments from the ocean floor. The pullout force measured on extracting the core barrel from the sediment is shown to correlate with the average shear strength of the sediment core measured in the ship's laboratory. A simple rule of thumb is derived relating the shear strength of the sediment to the pullout force. Multiple APC holes at individual sites allow the consistency of the pullout measurements to be assessed. The effects of different operational procedures during APC coring are also explored. Although generally applicable, the correlation between pullout force and laboratory measurements of shear strength breaks down for some APC holes, possibly because of the disturbance of some sediment types during the APC coring process. A better understanding of the physical process of APC coring, and its effect on the properties of the sediment both inside and immediately outside the core barrel, would indicate what confidence can be put on the measurement of pullout force as a way of evaluating the in situ shear strength of deep sea sediments.  相似文献   

3.
Abstract

Eight types of reflections are interpreted from 3,800 km of 3.5 kHz profiles taken over a 25,000 km2 area of the upper continental slope and shelf in the northeastern Gulf of Mexico off Panama City, Florida. The corresponding sediments in five of the reflection types were sampled in 77 piston cores from which data were obtained on in situ acoustic velocities (V), bulk densities (gr), sediment texture (mean grain size = Mz), CaCO3 content (C), sedimentary structures, and gross sediment composition. A distinct bottom echo with numerous subbottom reflectors (Type I) is observed in deeper areas where terrigenous clay or lutite (Mgi = 9.9 to, gr = 1.4 g/cc, porosity (P) = 74 percent, C = 28 percent, and V (upper 2 m) = 1,435 m/s) predominates. Type I reflection grades upslope into Type IV, which shows a distinct bottom echo with fewer subbottom reflectors, and the corresponding sediment is a foraminiferal silty clay (mz = 9.4 to, gr = 1.43 g/cc, P = 73 percent, V = 1,447 m/s, and C = 37 percent). The uppermost slope gives indistinct, semiprolonged bottom echoes with faint subbottoms (Type VI) where calcareous silt (Mz = 6.6 to, gr = 1.57 g/cc, P = 65 percent, C = 70 percent, and V = 1,482 m/s) is the main sediment type. The shelf sediments (gr = 1.66 g/cc, P = 58 percent, V = sl1,530 m/ s), varying from coarse silt (Mz = 5.3 to) to very coarse sand (Mz = ‐0.3 to) and 25 to 100 percent carbonate, show indistinct, semiprolonged bottom echoes with intermittent or mushy subbottoms (Type VII). Prolonged echoes with no subbottoms (Type VIII) are observed in areas where algal sands of variable grain size (Mz ‐ ‐0.9 to 2.7 to, gr = 1.66 g/cc, P = 59 percent, V = 1,530 to 1,690 m/s) occur.

The major trends in reflection types (loss in depth of penetration, loss in number of reflectors, and prolongation of initial bottom reflections) follow gradients of sedimentary and physical properties of the sediments, which are increases in mean grain size, bulk density, in situ acoustic velocity, CaCO3 content, and decrease in porosity. Increases in the reflection coefficient and attenuation of the sound energy in the shelf sediments are probably important factors in the observed decrease in the depth of penetration of the sound energy in the shelf sediments.  相似文献   

4.
High-resolution seismic survey and sediment core sampling were conducted to investigate acoustic characteristics of gas-bearing sediments in Jinhae Bay, the southeast of Korea. The sediment in Jinhae Bay is mostly homogenous mud deposited after the Holocene transgression. Along with the 410 km of chirp seismic profiling, five piston core samples were collected on the track lines.

Gassy sediments are common and occur widely in the bay. Core samples were analyzed for sediment texture, physical properties (porosity, water content, bulk density, and grain density), acoustic properties (compressional wave velocity and attenuation), and electrical resistivity. X-radiograph image analysis was also performed to observe the shape of degassing cracks. There is no significant downcore variation on physical and sediment textures regardless of existence of gas bubbles. However, compressional wave velocity dramatically decreases from average 1480 to 1380~739 m/s for the cores that penetrate the gas-bearing zones. This is probably due to degassying cracks that developed by escaping gases and free gas bubbles that are still trapped in the cores. Electrical resistivity is the only geotechnical property that increases in the gas-bearing zone where compressional wave velocity abruptly decreases. This indicates the possibility of using both electrical resistivity as an index variable as well as to compressional wave velocity to identify gassy sediment microstructure because there are little changes in texture and composition of sediment.  相似文献   

5.
Abstract

Palar basin is located between Pennar and Cauvery sedimentary basins of East coast of India in Bay of Bengal, northeast Indian Ocean. Sea floor drill (Wire-line Autonomous Coring System – WACS) with operational capability of up to 3000?m water depth was developed to collect long cores from deep sea floor for geotechnical and ocean resource assessment studies. During the drilling operation it encountered Nummulitic coralline limestone of Lower Eocene age at 18 meters below the seafloor (mbsf) at 850?m water depth indicating carbonated platform presence for the first time at the study region. Bathymetry contour from Naval Hydrography Chart and General Bathymetric Chart of the Oceans (GEBCO) has revealed the presence of shallow mounds from 50 to 200?m depth closure contour near the sampling site at 850?m water depth which might be a submerged carbonated structure. Since, Nummulites are shallow water dwelling fauna (<20?m depth) but its occurrence at 18 mbsf in 850?m water depth is recorded because of the advancement in technology tool for long core sampling by means of sea floor drill.  相似文献   

6.
Abstract

In this article, based on the rheological consolidation model of deepwater shallow sediments, the artificial samples were made in laboratory. The feasibility of artificial samples was verified by electron microscopy scanning and triaxial experiments. Deepwater shallow sediments consolidation models mainly considers two points: (i) the change of permeability with time and temperature and (ii) the effect of rheology. The consolidation experiment of deepwater shallow sediments verifies the correctness of the model. It can be found that, the artificial and natural samples have the same physical and mechanical properties. And the physical properties of natural samples can be obtained by rheological consolidation model of deepwater shallow sediments.  相似文献   

7.
Near-bottom normal incidence acoustic reflection data and sediment physical property data are used to study the relationships between acoustic reflections and sediment physical properties. A pinger-hydrophone experiment was performed to obtain the necessary acoustic reflection data. In addition, a standard piston core was retrieved in the acoustic survey area for physical property analysis. The piston core was sampled and 13 properties were measured at 55 locations within the top 12 m of the core. Correlation studies amongst the sediment physical properties resulted in the following strong correlations: acoustic impedance (Z) and porosity (N), (0.96); water content (WC) and Z, (0.95); bulk density (BD) and Z, (0.99).The empirical orthonormal function (EOF) method was employed for acoustic signal analysis. This method assumes no a-priori models of the sediment or causality. The EOF method reduced the acoustic data to 8 functions that contained 97.6% of the sample variance. The EOFs were subsequently analysed by using cepstrum analysis which reveals time delay information and enhances detecting zones of reflectivity. The result of the sediment physical property and cepstrum analysis indicates that zones of reflectivity are essentially zones of relatively high acoustic impedance, low porosity, and low phi (high mean grain size).  相似文献   

8.
Abstract

Keeping in view the paucity of information as to the nature of the marine sediments from the continental shelf adjoining the Indian subcontinent, a number of shallow seismic surveys were carried out, nearshore and offshore Bombay between 18°45'N and 21°00'N. Representative core samples preserving their natural state were also retrieved from the region in the water depths ranging from 5 to 70 m for the determination of physical properties in the laboratory. Data on the physical, acoustic, and elastic properties of the sediment cores are reported for the first time. Useful individual least‐squares relations are presented for acoustic impedance, reflection coefficient, and bulk modulus against density; for the dependence of rigidity and bulk moduli on the constrained modulus; for the association between impedance and field sediment velocity against P‐velocity; and for rigidity against Poisson's ratio. Results indicate that the bulk modulus and Young's modulus are higher for silty clay and clayey silt samples than for the clay samples. Similarly, the acoustic impedance, reflection coefficient, and constrained modulus of silty clay and clayey silt are also higher than clay. The results are found to be comparable to the North Atlantic and Bay of Bengal sediments.  相似文献   

9.
ABSTRACT

When dredged soil containing coarse soil is used for the construction of reclaimed ground that is in contact with the surface of seawater, there is a high possibility of the generation of nonuniformly reclaimed ground due to the segregation of fine-grained soil from coarse-grained soil. It is difficult to assume uniform properties of reclaimed ground because the properties are defined and formed by the spontaneously segregating sedimentation. Estimation of the soil’s volume change lacks accuracy if the properties of the reclaimed ground are assumed to be always uniform. Therefore, for pump-dredged reclamation, a predictive study and various experiments are required to estimate the physics and properties of the dredged soil sedimentation. Accordingly, this study demonstrates a modeling test to understand the characteristics of the sedimentary ground using the changing ratio of fraction of the sample passing through a 75-µm sieve. The effect of particle arrangement on hindered settling properties, sedimentation properties, the distribution of water content of sedimentary ground, and physical properties can be determined by the modeling test. The study also suggests the calculation method for the travel distance of the outlet and the volume of input soil based on the experimental results.  相似文献   

10.
Abstract

Sands and silty sands are the predominant surficial soils of continental shelves. Cohesive fine‐grained soils are typical off the mouths of large rivers, near bays and estuaries, and in basins located on the shelf. The stratigraphy of shelf soils is very poorly known for most engineering purposes, except in the vicinity of the Mississippi Delta.

Vibratory coring is the most common method of sampling shelf sands to depths of about 13 m; greater soil depths are sampled by borings often using drilling and wireline sampling tools. Employment of self‐contained or wireline static cone penetrometers to obtain in situ measurements of sands has not been as common in the United States as in Europe. Dynamic piston corers are the most common samplers in cohesive soils, but rotary and hydraulically activated incremental corers are becoming available for marine use. Self‐contained or wireline vane shear devices and static cone penetrometers are used for the in situ testing of cohesive soils, and the latter device is also used for cohesionless soils. Dynamic cone penetrometers have been developed and have had limited experimental use at sea. In situ electrical resistivity and nuclear‐transmission and backscatter probes have been used in cohesive soils to obtain bulk‐density and water‐content measurements and for stratigraphic correlation. Acoustical properties of cohesive and cohesionless soils have been measured by in situ probes and have been estimated from results of geophysical surveys made on ships that are under way.

Environmental hazards to the foundations of offshore structures include earthquakes, wave‐induced loading and scour, and burrowing animals. Reported bottom‐current velocities on the United States continental shelf appear to have maximums of about 0.5 m/s under fair‐weather conditions and greater than about 5 m/s under hurricane conditions. Cyclical loading of the seafloor induced by storm waves appears to be a major hazard to soil stability in some areas.

A representative sample of the widely scattered engineering and scientific literature of continental shelf marine geotechnics and geotechnically related subjects has been made to aid marine geologists, geotechnologists, and other specialists.  相似文献   

11.
ABSTRACT

Despite a number of geotechnical investigations that have been carried out in the Busan new port area of South Korea, the local practicing engineers have been unable to deduce successfully the geotechnical properties of the clays due to their spatial variation. In the area, clay deposits, so-called Pusan clays, are unusually thick, varying from 20 m to 70 m in thickness. For this study, comprehensive geological and geotechnical investigations were carried out with sophisticated sampling techniques, in situ and laboratory tests as well as geological analyses at an additional three locations. As a result of the investigations, it was found that depositional environments are closely related to the relative changes in sea level and have different features depending on location and depth. The clays consist of soft and stiff clays in the upper and the lower layers, respectively, which are classified as normally consolidated and cemented clay. Moreover, most of the geotechnical properties undergo small changes due to their depositional environment. Information about these effects would be quite helpful to understand the spatial variation of geotechnical properties as well as the effect of sample disturbance. Some correlations which reflect the geological history of the deposts were conducted for physical indexes and mechanical properties.  相似文献   

12.
During the 54th cruise of the R/V Akademik Mstislav Keldysh the macrobenthos of the Novaya Zemlya Trough was studied using a Sigsby trawl along the submeridional transect near 75°30′N latitude at a depth range from 68 to 362 m. In total, 140 species of bottom animals were found. The relative role of the taxons was assessed using three indices: the number, biomass, and energy flow. Similarity indices were used for the comparison of the samples. The new material greatly contributes to the data on the composition of the fauna and the structure of the communities of the studied region. It was revealed that small scyphozoid polyps and sipunculoids play an important role in the trough’s community. The presence of the community dominated by Ophiocten sericeum (with the important role of small bivalves) was revealed for the first time not only at the eastern by also at the western slope of the Novaya Zemlya Trough. The sharpest changes in the composition and structure of the bottom community were confined to the zone of the transition from the trough floor to the slope. These changes are determined by the specificity of the macrorelief (of the floor and slope), the composition of the ground (soft brown silts abound in rhizopods and dense gray silts with an admixture of pebbles), and possibly by the hydrodynamic processes near the bottom.  相似文献   

13.
High‐resolution vertical and lateral gradients and variations in sediment mass physical properties were derived from measurements in box cores, on the scale of millimeters, tens of centimeters, and kilometers from typical, relatively broad areas of the northern California continental slope in the Cape Mendocino area at water depths from 380 to 940 m. Such data are important as a control on comparisons of different sediment suites, as well as providing limits for realistic flux calculations of dissolved inorganic and biochemical species and pollutants. The sediments studied have relatively constant organic carbon contents (OC ? 1.75 wt%) and bulk mineralogy. They range from silty sands (~45% sand, 40% silt) to clayey silts (~63% silt, ~35% clay) and are extensively bioturbated. Physical property variations between subcores (~25 to 35 cm in length), taken from the same box core, increase with increasing clay content. For coarse‐grained sediments, mean down‐core differences in physical property values between related subcores are small, averaging 3.6% for water content, 4% for porosity, 0.026 Mg/m3 for wet bulk density, and 0.1 for void ratio. Subcore variations for fine‐grained sediments are generally significantly larger, averaging 9.8% for water content, 1.52% for porosity, 0.027 Mg/m3 for wet bulk density, and 0.3 for void ratio (box core 125). Millimeter variations of physical properties from horizontal 12‐cm‐long subcores indicate a maximum range of lateral variation of 18.2% for water content, 8% for porosity, 0.14 Mg/m3 for wet bulk density, and0.6 for void ratio.  相似文献   

14.
Three cores of marine sediments from the Shenhu area in the northern part of the South China Sea were analyzed by XANES analysis for sulfur speciation. The area has been investigated for the presence of hydrocarbons and potential gas hydrate formations. Cored samples of site 4B showed a specific profile of sulfur speciation with sharp and frequent variations in relative contents of sulfate and sulfide, which differed greatly from the profiles obtained for the sediments taken at sites 5B and 6A. The upper part of core 4B (of 0–95 cm) was soft and rich in pore water, containing mainly coarse silt sand. The lower part of the core (i.e., depth > 95 cm) was relatively dryer and darker in color, and dominated by silts and clay resembling sediments from mud volcanoes. The sulfur speciation results revealed that sulfate makes up almost 100 percent of all sulfur species in the upper part of the core 4B, which indicates strong oxidizing conditions, whereas the lower part of the same core has high relative contents of sulfide, sometimes close to 100% S2−. In the lower part of the core, the relative content of sulfide and sulfate changes rapidly and frequently, indicating rapid changes of oxidizing and reducing conditions. On the other hand, the vertical profiles of sulfur species for the cores from sites 5B and 6A are relatively consistent with lower sulfide contents indicative of stable and weaker reducing conditions. We hypothesize that the frequent and sharp variations in the ratios of sulfide to sulfate at site 4B may indicate some intermittent eruption of methane with clay from petroleum reservoirs underneath the sea floor over a relatively short period of time.  相似文献   

15.
Abstract

The San Diego Trough Geotechnical Test Area, located about 24 km southwest of San Diego in a water depth of about 1.2 km, lies near the base of the Coronado Escarpment directly north of the Coronado Fan. A new bathymetric map delineates a shallow basin in the soft, highly plastic, clayey silts flooring the Test Area. Measurements of shear strength by vane and static cone pene‐trometer, and bulk density by nuclear densitometer, were made in place from the submersible Deep Quest. Sixteen short (< 1.6 m) gravity cores were collected from ships.

The geotechnical properties show little areal variation and generally change uniformly with depth within the 55 km2 Test Area. Silt is the predominant grain size, averaging about 62%. In‐place bulk density shows little change with increasing depth, values range from 1.23 to 1.26 Mg/m3; laboratory density values increase with depth, ranging from 1.30 to 1.52 Mg/m3 between the surface and a depth of about 1.1 m. The difference between the in place and laboratory values may indicate sampling densification of the cored sediment. Water content in the cores decreases uniformly within the range of 249 to 43% dry weight. Shear strength increases linearly with depth. The laboratory shear strength values are lower than the in place values, which range from 4 kPa at the surface to about 29 kPa at a depth of 3.27 m. Predictor equations relate Atterberg limits, bulk density, water content, and laboratory and in place shear strength to depth. Sedimentation‐compression e log p curves have an equivalent compression index of 1.5 to nearly 2. Excluding rurbidite layers and sampling disturbance effects, all cores indicate a uniform depositional environment in the surface to 1.6 m of sediment sampled. The geotechnical properties indicate that the sediments in the west central and southwest parts of the Test Area exhibit vertical heterogeneity due to thin silt‐sand layers, presumably of turbidity current origin, that originated from the Coronado Canyon.  相似文献   

16.
Abstract

A number of engineering organizations and individuals have contributed toward a comprehensive feasibility study made in 1973–1974 in connection with a submerged floating tunnel project in Norway. The tunnel is planned to cross the 500 m deep Eidfjord in Hardanger over a length of about 1.3 km. The main findings from geophysical explorations, subsoil sampling operations, and an extensive laboratory testing program on extracted soil samples are described here.

A main part of this paper is devoted to the study of a full‐scale field test with a gravity anchor block weighing 180 tonne. This study reports on the behavior of the block during launching from its sloping construction ground, the sinking operation, and the behavior of the block after it reached the bottom at 450 m depth. Observations of settlement and tilt are available, and a comparison is made between the observed and computed behavior. Broadly speaking, a fairly good agreement was found.  相似文献   

17.
A distinct porcellanite layer from the Southwest Indian Ridge intercalated in Pleistocene diatom ooze was studied using nondestructive physical property measurements and sedimentological data. This bed was sampled by two piston cores at a water depth of 2615 m. The 3–5 cm thick porcellanite layer appears in the cores at a depth of 6.03 m (Core PS2089-2) and 7.73 m (Core PS2089-1) below the seafloor. Due to its characteristic physical properties the porcellanite bed can be detected with core measurements, and its distribution and lateral extent mapped with echosounding. The physical index properties, wet bulk density and electrical resistivity, increase significantly across this bed. Magnetic susceptibility is used to compare the lithological units of both cores and to distinguish whether resistivity anomalies are caused by a higher amount of terrigenous components or by the presence of porcellanite. The porcellanite has the special characteristic to affect a positive anomaly in resistivity but not in susceptibility. Most marine sediments, in contrast, show a positive correlation of magnetic susceptibility versus electrical resistivity; therefore a combination of electrical resistivity and magnetic susceptibility logs yields a definite detection of the porcellanite bed. Images from the X-ray CT survey indicate that the porcellanite is lithified and brittle and fragmented when the piston corer penetrated the bed.  相似文献   

18.
Abstract

The composition and properties of glacigenic sediments in the southwestern Barents Sea are described based on data from 33 shallow boreholes (< 143 m below seabed) and 11 seabed cores (<4.2m below seabed). The cores are tied into a regional seismostratigraphic framework, illustrating the relationships between different boreholes.

A massive, muddy diamicton (silty, sandy clay with scattered gravel) is found in nearly all cores. Average clay content (<2 pm) of this lithology is about 38%, but varies between about 25% and 50%. Short intervals of finely laminated, waterlain sediments or gravelly sand are cored in a few occasions. A high content of sand and gravel in the cores from near the Norwegian coast shows an influence of sediment input from the mainland, while material eroded from sedimentary rocks dominates farther offshore.

The data presented on physical properties include undisturbed and remolded undrained shear strength, natural water content, bulk density, compressional sound velocity (P waves), Atterberg consistency limits, effective preconsolidation pressure, and consolidation coefficient.

Prediction of overconsolidation from seismic mapping of erosional surfaces is confirmed by the borehole cores. High compaction is found both in Weichselian and older deposits, with a general increase in compaction toward the east as well as toward shallower water. Cores that are “underconsolidated” at their present burial depth are also reported.

The average compressional sound velocity is about 1780 m/s for the borehole cores, 1550 m/s for the seabed cores, and increases with increasing shear strength and consolidation. Both horizontal and vertical sound velocities are measured in several cores, and although the data have a considerable scatter, a slightly aniso‐tropic sound velocity is indicated.  相似文献   

19.
Abstract

The present work develops a theoretical model based on a rational mechanical model and the failure mechanism of anchor piles in the seabed, by which the failure mode and pullout capacity of anchor piles under inclined loading can be predicted in the soils with both cohesive and cohesionless properties. Experimental and numerical results are employed to validate the theoretical predictions. Parametric studies are performed to investigate the effects of different parameters on the failure mode and pullout capacity of anchor piles, to demonstrate the applicability and efficiency of the theoretical model and to gain further knowledge of the anchor properties. An analytical method is also proposed to evaluate the optimal position of the attachment point of anchor piles, and confirmed by relevant studies in either cohesive or cohesionless soils.
  1. Highlights
  2. A novel theoretical model is proposed to analyze the failure mode and pullout capacity of anchor piles.

  3. The model is applied to inclined loading and to soils with both cohesive and cohesionless properties.

  4. Efficiency and applicability of the model are validated through comparative and parametric studies.

  5. A simple expression is proposed to predict the optimal position of the attachment point for anchor piles.

  相似文献   

20.
Abstract

The mechanical characteristics of calcareous silt interlayers play an important role in the stability of island-reef foundations. Direct shear and consolidation tests were performed to study the relationship between the mechanical properties and the physical parameters of calcareous silt. Based on the consolidation test results and analysis of the settling examples, different calculation methods for soil settling were compared. The results show the following. (1) The relationship between the cohesion and water content of calcareous silt can be represented by an M-shaped curve. The water contents corresponding to the two peaks of the M-type curve increase with increasing dry density. (2) When the dry density is less than 1.33?g/cm3, increasing the density significantly improves the internal friction angle of calcareous silts. When the dry density of the calcareous silt is greater than 1.33?g/cm3, the internal friction angle is affected by both the dry density and the water content. (3) The shear strength decreases when the water content exceeds the optimum level. (4) The compressive modulus of calcareous silt is larger than that of terrigenous silt. Specifically, it decreases with decreasing dry density and increasing water content. (5) The stepwise loading method should be used to estimate the soil settling before fill engineering construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号