首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Under seismic loading, the soil layer is subjected to multidirectional cyclic shear stress with different amplitudes and frequencies because of the coupling of multiple shear waves and the soil element within a slope or behind a retaining wall is subjected to initial static shear stress before subjected to cyclic loading. Due to the complexity of seismic loading propagation, a phase difference exists between the initial static shear stress and cyclic shear stress. To investigate the influence of the phase difference and initial static shear stress on cyclic shear strain, cyclic modulus, and cyclic strength, a series of laboratory tests are performed on Wenzhou marine soft clay by multi-directional simple shear system, which can simulate the actual state better by controlling the horizontal cyclic stress in the x and y directions simultaneously. As the phase difference varies from 0° to 90°, the dynamic shear modulus increases and cyclic strain accumulation decreases with an increasing number of cycles. The shear strain increases with the initial shear stress.  相似文献   

2.
Lakes can be used as model basins to investigate subaqueous slope stability under static and dynamic loading conditions. This study combines geophysical, sedimentological and in situ geotechnical methods with limit equilibrium calculations in order to discuss (i) the geological and sedimentological processes acting on submerged non-deltaic lateral slopes in perialpine, fjord-type Lake Lucerne (Central Switzerland); (ii) their control on physical and geotechnical properties that eventually affect the subaqueous stability conditions and slope failure initiation, and (iii) the quantitative assessment of subaqueous slope stability. Three detailed case studies are presented to describe and quantitatively reconstruct stability conditions of slopes that failed during a well-documented historic earthquake in 1601 A.D. and during a prehistoric Late Holocene earthquake around 2220 cal yr BP (both Mw > 6).

Glacio-lacustrine sedimentation dominated by suspension settling from meltwater plumes and slight overconsolidation from ice-grounding during small readvances of a generally retreating glacier lead to a peculiar glacial-to-postglacial lithologic slope succession that eventually was buried by the Holocene sediment drape. During past earthquake shaking, the slopes that were stable under static loading conditions (factor of safety of 1.5–2) failed along planar sliding surfaces that developed at the lithological boundary between fine-grained, thinly-laminated, slightly underconsolidated cyclic plume deposits with low undrained shear strength values above and overconsolidated, glacially-deformed, glacio-lacustrine deposits with excessive formation pore pressure below. Measured in situ shear strength characteristics and sediment geometries were implemented into limit equilibrium models that allow for quantitative reconstruction of critical ground accelerations of past earthquakes in Central Switzerland. Results reveal seismic peak ground acceleration (PGA) of  0.08 g and  0.14 g for the historic 1601 A.D. Mw  6.2 earthquake and the prehistoric,  2220 cal yr B.P. earthquake, respectively. Additionally, results reveal that stability conditions change over relative short geological time scales because the postglacial sedimentation rate, which mainly controls the static weight of the slope sediment acting on the critical lithological boundary, turns out to be a key parameter in “charging” slopes susceptible to sliding.  相似文献   


3.
Abstract

Cement soil mixing piles are an effective treatment method for marine soft clay. To investigate the static and dynamic characteristics of the composite soil with cemented soil core, a series of experiments are carried out by using the cyclic simple shear test. The result shows that, the static shear strain showed strain hardening, cemented soil core can improve static shear strength of composite soil, vertical stress can enlarge reinforcement of cemented soil core. The tendency of strain development of composite soil with different area replacement ratios under cyclic loading is the same as that of pure clay, existing critical cyclic stress ratios corresponding to different area replacement ratios. In addition, improving area replacement ratio can increase cyclic strength. At same time, adding of cemented soil core does not change shape of hysteresis curve compared with it for clay either. Moreover, cemented soil core can also obstruct stiffness softening. Through regression analysis of the experimental data, relationship between cyclic number and soil softening index is proved to be linear. The results can give a reference for the dynamic characters of the marine soft clay foundation with cement soil mixing piles.  相似文献   

4.
Abstract

Potential sediment mass movement was analyzed at ten locations on the continental slope off Peru and northern Chile, using samples obtained from up to 3 m below the seafloor. Shear strength parameters were obtained from consolidated‐undrained triaxial compression tests. Sediment behavior in these tests reflects the influence of organic matter, which is concentrated in the slope deposits by coastal upwelling. High water content of the organic‐rich sediments and the high de‐formability of organic matter contribute to the prevalent ductile behavior. Aggregation of clays by organic matter is apparently responsible for the high friction angles, up to 44°, displayed by the slope deposits. Sediment stability was assessed using infinite slope analyses. These analyses indicate that gravitational forces alone are not sufficient to cause sediment failure at any of the slope locations. Sediment accumulation on the slope is not rapid enough to generate excess pore pressure and reduce the resistance to gravitational sliding. Effects of earthquakes on slope stability were evaluated by modeling earthquake‐induced inertia forces as static forces and estimating pore pressures developed during cyclic loading. This analysis shows that sediments of the lower slope off Peru possess the highest susceptibility to failure during earthquakes. Earthquake accelerations on the order of 0.2 gravity are sufficient to trigger slumping at all ten slope locations. Indirect evidence suggests that creep and mass flows initiated at shallower water depths are factors that might contribute to sediment failure on the slope.  相似文献   

5.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α=6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/po values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α = 6°, cu /po =0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (c u /p o=0.30–0.50) is attributed to large horizontal accelerations(k=12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu /po = 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

6.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α = 6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐ drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/p o values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α=6°, cu/p o=0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (cu/p o=0.30–0.50) is attributed to large horizontal accelerations (k= 12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu/p o= 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

7.
Abstract

It has been observed that earthquake‐induced settlement depends on the excess pore water pressure accumulated during an earthquake. In particular, in the case where a clay layer is overconsolidated, excess pore water pressure is produced and settlement occurs by dissipation of the excess pore water pressure, which is very large in comparison with the coefficient of secondary compression. Therefore, if the settlement of clay ground induced by secondary compression becomes a serious problem, careful consideration of the earthquake‐induced settlement is needed. In this article, the settlement characteristics of a clay layer induced by cyclic shear are discussed, including the effects of loading period, the threshold shear strain below which no excess pore pressure or no settlement takes place, and the relationships between uniform shear strain cycles and irregular strain‐time histories. Then a calculation procedure for estimating the earthquake‐induced settlement is developed and applied to three soil profile cases, including the clay layers in Mexico City and Osaka Bay in Japan. In the case of a soil profile in Mexico City, settlements of about 0–3 cm are estimated and these values agree reasonably with the leveling results for the Mexico City earthquake of 1985. Furthermore, it is pointed out that the settlement induced by earthquakes is considerably affected by differences in the accelerograms.  相似文献   

8.
Abstract

The possibility of seafloor failure under external loadings on a gently sloping continental shelf is controlled, to a large extent, by the geotechnical characters of subbottom sediments (e.g., shear strength, compressibility, and liquefaction potential) and structural factors (e.g., sedimentary stratification). By means of undis‐turbing coring, in‐situ acoustic measurement, and subbottom profiling, the authors conducted an investigation into the seafloor instabilities and possibilities of sediment slope failure within the continental shelf off the Pearl River mouth, which is one of the most important areas for offshore development in the northern South China Sea. Based on in‐situ and laboratory measurements and tests for sediment physical properties, static and dynamic behavior, and acoustic characteristics, the analyses indicate: (1) subbottom sediments that originated from terrigenous clay during the Pleistocene are compact and overconsolidated, and the mean sound velocity in such sediments is relatively high; (2) the maximum vertical bearing capacity of subbottom sediments is efficiently conservative on the safe side for dead loads of light structures, and the trench walls are stable enough while trenching to a depth of about 2 m below the seafloor under still water; and (3) it is quite improbable that the subbottom sediments liquefy under earthquake (M ≤ 6) or storm wave loading.  相似文献   

9.
通过对南海重塑粉质粘土土样的大量动三轴试验结果分析,得到此种土在波浪荷载作用后不捧水抗剪强度衰化同动载作用引起的动应变幅及平均累积孔压之间的相互关系和预估公式;并通过与超固结土样的静三轴剪切试验结果的比较,发现动、静三轴两种试验结果具有很好的吻合关系。建议可用超固结土样的静三轴剪切试验同时结合部分动三轴试验来预估土样在波浪荷载作用后不排水抗剪强度衰化与平均累积孔压之间的关系。  相似文献   

10.
Abstract

Fine‐grained sedimentary deposits on the Kodiak continental shelf and upper slope comprise three distinct compositional types: terrigenous mud, diatomrich mud, and ash‐rich sandy mud. The sediment types can be distinguished on the basis of geotechnical properties as well as by composition. The terrigenous mud has properties largely within the normal range for fine‐grained marine sediment, except for the low compressibility of many samples. This sediment underlies the walls of canyons that incise the upper slope, and analyses of undrained static and cyclic loading indicate potential instability in the steepest areas. The diatom‐rich mud has high water content, plasticity index, and compression index but low grain specific gravity. The ash‐rich sandy mud is nonplastic and has low water content and compressibility. It has high drained and undrained static strength but is extremely weakened by cyclic loading. Extensive deposits of sedimentary bedrock and coarsegrained glacial sediment in the region apparently are relatively stable, but low sediment strength or high compressibility may be encountered at the local sites of soft sedimentary deposits.  相似文献   

11.
Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.  相似文献   

12.
Degradation in Cemented Marine Clay Subjected to Cyclic Compressive Loading   总被引:1,自引:0,他引:1  
The influence of cyclic loading on the strength and deformation behavior of cemented marine clay has been studied. This marine clay is of recent Pleistocene origin and deposited in a shallow water marine environment. Open pits were dug in sheeted enclosures and from these pits, undisturbed samples were taken for strength testing. A series of standard triaxial shear tests and stress controlled one-way cyclic load tests were conducted at consolidation stress ranges below and above the preconsolidation pressure. For the stress levels below the preconsolidation pressure, the cyclic loading has brought about the collapse of the cementation bond through an increase in strains, and at higher pressure ranges, the soil behaves like typical soft clay. This experiment studied the rate of development of strain and pore water pressure and shows that rate is a function of number of cycles, applied stress, and stress history. In addition, soil degradation during cyclic loading is studied in terms of Degradation Index. Attempt has been made to predict stain, pore water pressure, and degradation index through an empirical model.  相似文献   

13.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

14.
An angle exists between the initial static shear stress and cyclic shear stress when embankment and retaining walls are subjected to cyclic loadings. To investigate the influence of this angle on the dynamic properties of marine soft clay, tests were performed on Wenzhou soft clay. When the angle was varied from 0° to 90°, the shear strain and excess pore pressure decreased as θ increased while increased as θ increased from 120° to 180°. Shear strain developed more rapidly when θ was 120°, 150°, or 180° than that when θ was 0°, 30°, or 60°. These results indicate that the number of cycles to failure at the larger angles was greater than at the smaller angles. When θ was 90°, the strain in the x-axis direction increased as the number of cycles increased. The development of the excess pore pressure associated with specimen failure was different for different cyclic shear stress ratios and shearing angles. The effect of θ on the strain and excess pore pressure increased as the cyclic shear stress ratio increased.  相似文献   

15.
ABSTRACT

One-way cyclic loading is more typical for traffic loading and cyclic triaxial test has been recognized as a useful method for solving many engineering problems. Under traffic loading, the influence of variable confining pressure on cyclic behavior of natural organic clay subjected to cyclic traffic loading is rarely reported in the literature. In this study, a laboratory investigation on undrained cyclic behavior of natural organic clay is presented and conducted by cyclic triaxial apparatus. Tests are conducted by both constant confining pressure and variable confining pressure, to simulate the loading conditions induced by passing vehicles in actual engineering. Different stress levels are also considered in this study. By comparing between the results of constant confining pressure tests and variable confining pressure tests, it shows that the one-way cyclic behavior of organic clay is influenced significantly by variation of confining pressure, in terms of pore water pressure, permanent axial strain and stress–strain hysteretic loops.  相似文献   

16.
Abstract

Vertical variations of geotechnical properties in the uppermost sediment layers characterize the main sedimentary processes acting on the construction and destruction of progressive‐type continental slopes. In the Gulf of Lions, the original thicknesses and distribution of the uppermost sedimentary layers of the continental slope and rise, which consist of Holocene muds overlying Pleistocene muds, have been greatly modified by erosion and several kinds of slope failure processes. Each process is typified through sets of geotechnical properties measured in the eroded or slumped sections and in the associated sediment accumulations.

In slump scars, the water‐rich Holocene muds lie on fine, overconsolidated, Pleistocene muds with high plasticity and low shear strength. In bottom current‐eroded slopes, where modern sedimentation is extremely reduced, the Pleistocene muds frequently outcrop and may sometimes be overlain by a very thin layer of Holocene muds. The Pleistocene muds of eroded slopes are overconsolidated and more silty and less plastic than the Pleistocene muds from slopes affected by slope failure, their shear strength being 10 times greater.

Deposits at the toe of slumps are very often formed by several superposed three‐layer units (triplets of interstratified Holocene, transitional, and Pleistocene layers) issued from retrogressive slumping occurring in the slump scars above their head area. The main body of each layer is then relatively undisturbed, showing the usual burial geotechnical gradients due to overburden pressure (i.e., decrease of water content and increase of unit weight and shear strength). At the toe of bottom current‐eroded slopes, a thick and homogeneous layer of Holocene muds overlies the Pleistocene muds; this Holocene layer has unappreciable burial depth gradient of its geotechnical parameters because of a high rate of modem and continuous deposition.  相似文献   

17.
The paper presents the results of a series of monotonic and cyclic triaxial shear tests carried out to study the influence of the strain effect and load cycles on the undrained shear strength of a cemented marine clay from the East coast of India. The undrained shear strength of Indian coastal marine clay has been established from a detailed shear testing carried out in three phases. Undisturbed soil samples taken out from the seabed were used in the test. In the first part, a comprehensive monotonic shear testing has been carried out under both stress-controlled and strain rate-controlled conditions. In the second phase on identical soil specimen, undrained cyclic shear tests were carried out at various cyclic stress ratios (CSR) and these stress levels are chosen in such a way so that no failure occurred during testing. In the final phase post cyclic monotonic shear testing was conducted to qualitatively evaluate the damage caused by cyclic loading. The monotonic shear test results bring out the influence of cementation that can be detected by the stress-controlled test. The cyclic stress results are analysed in terms of CSR. Further, the results are correlated in terms of stress path.  相似文献   

18.
Stability analysis, based on infinite slope analysis and geotechnical data from a suite of 34 cores collected from the continental slope between Wilmington and Lindenkohl Canyons, indicates that the Quaternary surficial silty clay sediments on gentle slopes are stable; that sediment stability on steeper slopes (14°–19°) is marginal; and that on precipitous slopes (>50°) only a thin veneer of unconsolidated sediments can exist. Small earthquake-induced accelerations or the effects of internal waves can result in slope sediment instabilities.  相似文献   

19.
Laboratory analysis of core samples from the western Alboran Sea slope reveal a large variability in texture and geotechnical properties. Stability analysis suggests that the sediment is stable under static gravitational loading but potentially unstable under seismic loading. Slope failures may occur if horizontal ground accelerations greater than 0.16g are seismically induced. The, Alboran Sea is an active region, on which earthquakes inducing accelerations big enough to exceed the shear strength of the soft soil may occur. Test results contrast with the apparent stability deduced from seismic profiles.  相似文献   

20.
Foundations of offshore structures are designed to withstand a combination of static and cyclic loads due to ocean waves. Wave action on offshore structures can cause a significant amount of cyclic horizontal and vertical forces to be transmitted to the soil through the foundation. In all these cases, these cyclic loads are considered to be superimposed over the initial sustained static stress due to the self-weight of structures. This study considers various factors that influence the development of deformation and pore water pressure in a typical cemented marine clay. These results show that the sustained static shear stress significantly influences the strength and deformation behavior of marine clay under cyclic loading. Up to a certain range of sustained static stress, there is an improvement in strength during cyclic loading and the cyclic strains are greatly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号