首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present submillimetre data for the L1689 cloud in the ρ Ophiuchi molecular cloud complex. We detect a number of starless and pre-stellar cores and protostellar envelopes. We also detect a number of filaments for the first time in the submillimetre continuum that are parallel both to each other, and to filaments observed in the neighbouring L1688 cloud. These filaments are also seen in the 13CO observations of L1689. The filaments contain all of the star-formation activity in the cloud. L1689 lies next to the well-studied L1688 cloud that contains the ρ Oph-A core. L1688 has a much more active star-formation history than L1689 despite their apparent similarity in 13CO data. Hence, we label L1689 as the dog that didn't bark. We endeavour to explain this apparent anomaly by comparing the total mass of each cloud that is currently in the form of dense material such as pre-stellar cores. We note firstly that L1688 is more massive than L1689, but we also find that when normalized to the total mass of each cloud, the L1689 cloud has a much lower percentage of mass in dense cores than L1688. We attribute this to the hypothesis of Loren that the star formation in the ρ Ophiuchi complex is being affected and probably dominated by the external influence of the nearby Upper Scorpius OB association and predominantly by σ Sco. L1689 is further from σ Sco and is therefore less active. The influence of σ Sco appears none the less to have created the filaments that we observe in L1689.  相似文献   

2.
We present C18O observations of the pre-stellar core L1689B, in the J =3→2 and 2→1 rotational transitions, taken at the James Clerk Maxwell Telescope in Hawaii. We use a λ -iteration radiative transfer code to model the data. We adopt a similar form of radial density profile to that which we have found in all pre-stellar cores, with a 'flat' inner profile, steepening towards the edge, but we make the gradient of the 'flat' region a free parameter. We find that the core is close to virial equilibrium, but there is tentative evidence for core contraction. We allow the temperature to vary with a power-law form and find that we can consistently fit all of the CO data with an inverse temperature gradient that is warmer at the edge than at the centre. However, when we combine the CO data with the previously published millimetre data we fail to find a simultaneous fit to both data sets without additionally allowing the CO abundance to decrease towards the centre. This effect has been observed qualitatively many times before, as the CO freezes out on to the dust grains at high densities, but we quantify the effect. Hence we show that the combination of millimetre/submillimetre continuum and spectral line data is a very powerful method of constraining the physical parameters of cores on the verge of forming stars.  相似文献   

3.
We introduce a differential equation for star formation in galaxies that incorporates negative feedback with a delay. When the feedback is instantaneous, solutions approach a self-limiting equilibrium state. When there is a delay, even though the feedback is negative, the solutions can exhibit cyclic and episodic solutions. We find that periodic or episodic star formation only occurs when two conditions are satisfied. First the delay time-scale must exceed a cloud consumption time-scale. Secondly, the feedback must be strong. This statement is quantitatively equivalent to requiring that the time-scale to approach equilibrium be greater than approximately twice the cloud consumption time-scale. The period of oscillations predicted is approximately four times the delay time-scale. The amplitude of the oscillations increases with both feedback strength and delay time.
We discuss applications of the delay differential equation (DDE) model to star formation in galaxies using the cloud density as a variable. The DDE model is most applicable to systems that recycle gas and only slowly remove gas from the system. We propose likely delay mechanisms based on the requirement that the delay time is related to the observationally estimated time between episodic events. The proposed delay time-scale accounting for episodic star formation in galaxy centres on periods similar to   P ∼ 10 Myr  , irregular galaxies with   P ∼ 100 Myr  , and the Milky Way disc with   P ∼ 2  Gyr, could be that for exciting turbulence following creation of massive stars, that for gas pushed into the halo to return and interact with the disc and that for spiral density wave evolution, respectively.  相似文献   

4.
We employ the first fully three-dimensional simulation to study the role of magnetic fields and ion–neutral friction in regulating gravitationally driven fragmentation of molecular clouds. The cores in an initially subcritical cloud develop gradually over an ambipolar diffusion time while the cores in an initially supercritical cloud develop in a dynamical time. The infalling speeds on to cores are subsonic in the case of an initially subcritical cloud, while an extended (≳0.1 pc) region of supersonic infall exists in the case of an initially supercritical cloud. These results are consistent with previous two-dimensional simulations. We also found that a snapshot of the relation between density (ρ) and the strength of the magnetic field ( B ) at different spatial points of the cloud coincides with the evolutionary track of an individual core. When the density becomes large, both the relations tend to   B ∝ρ0.5  .  相似文献   

5.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

6.
We have mapped linearly polarized dust emission from the pre-stellar cores L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter (SCUBAPOL) at a wavelength of 850 μm. We use these measurements to determine the plane-of-sky magnetic field orientation in the cores. In L1498, we see a magnetic field across the peak of the core that lies at an offset of ∼19°± 12° to the short axis of the core. This is similar to the offsets seen in previous observations of pre-stellar cores. To the south-east of the peak, in the filamentary tail of the core, we see that the magnetic field has rotated to lie almost parallel to the long axis of the filament. We hypothesize that the field in the core may have decoupled from the field in the filament that connects the core to the rest of the cloud. We use the Chandrasekhar–Fermi (CF) method to measure the plane-of-sky field strength in the core of L1498 to be ∼10 ± 7 μG.
In L1517B, we see a more gradual turn in the field direction from the northern part of the core to the south. This appears to follow a twist in the filament in which the core is buried, with the field staying at a roughly constant ∼25°± 6° offset to the short axis of the filament, consistent with previous observations of pre-stellar cores. Hence these two clouds in an apparently similar evolutionary state, that exhibit similar masses, morphologies and densities, have very different magnetic field configurations. We again use the CF method and calculate the magnetic field strength in L1517B to be ∼30 ± 10 μG. Both cores appear to be roughly virialized. Comparison with our previous work on somewhat denser cores shows that, for the denser cores, thermal and non-thermal (including magnetic) support are approximately equal, while for the lower density cores studied here, thermal support dominates.  相似文献   

7.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

9.
Despite the low elemental abundance of atomic deuterium in the interstellar medium (ISM), observational evidence suggests that several species, both in the gas phase and in ices, could be heavily fractionated. We explore various aspects of deuterium enrichment by constructing a chemical evolution model in both gaseous and granular phases. Depending on various physical parameters, gases and grains are allowed to interact with each other through the exchange of their chemical species. It is known that HCO+ and N2H+ are two abundant gas phase ions in the ISM and, their deuterium fractionation is generally used to predict the degree of ionization in the various regions of a molecular cloud. For a more accurate estimation, we consider the density profile of a collapsing cloud. The radial distributions of important interstellar molecules, along with their deuterated isotopomers, are presented. Quantum chemical simulations are computed to study the effects of isotopic substitution on the spectral properties of these interstellar species. We calculate the vibrational (harmonic) frequencies of the most important deuterated species (neutral and ions). The rotational and distortional constants of these molecules are also computed in order to predict the rotational transitions of these species. We compare vibrational (harmonic) and rotational transitions as computed by us with existing experimental and theoretical results. It is hope that our results will assist observers in detecting several hitherto unobserved deuterated species.  相似文献   

10.
We investigate the Parker instability (PI) influenced by thermal processes in a non-adiabatic, gravitationally stratified interstellar medium and discuss a model including the photoionization heating together with the supplemental heating mechanisms postulated by Reynolds, Haffner and Tufte. A cooling rate due to radiative losses is described by an approximation to the realistic cooling function of Dalgarno and McCray for ionized interstellar gas. An unperturbed initial state of the system simultaneously represents both a magnetohydrostatic and thermal equilibrium, and is thermally stable. We perform a set of 3D numerical magnetohydrodynamic simulations using the zeusmp code. We find that PI developing in the presence of non-adiabatic effects promotes a transition of gas in magnetic valleys to a thermally unstable regime. We find that the region of initially enhanced density due to PI starts to condense more as the result of thermal instability action. The density in this region rises above the classical isothermal limit of two times the equilibrium value at the mid-plane. The maximum density in an evolved system reaches 10–40 times the equilibrium value at the mid-plane, and the structures so formed attain oval shapes. These results lead to the conclusion that PI, operating in the presence of realistic cooling and heating processes, can trigger the formation of dense clouds, which may give rise to giant molecular complexes.  相似文献   

11.
We map the dark molecular cloud core of L134 in the C18O (J = 1 - 0) emission line using the PMO 13.7m telescope, and present a contour map of integrated intensity of C18O (J = 1 - 0) emission. The C18O cloud is inside the distribution of extinction AB, the visual extinction of blue light, as well as inside the 13CO cloud in the L134 region. The depletion factors in this C18O cloud are generally greater than unity, which means there is gas depletion onto dust. Since only a minimum AB = 9.7 mag is available, and our observations measure both undepleted and depleted regions along the line of sight, the depletion factors could very likely be larger in the central core than the calculated value. So we conclude that depletion does occur in the bulk of the C18O cloud through a comparison between the C18O and blue extinction maps in the L134 region. There is no direct evidence as yet for star formation in L134, and so cores on the verge of collapse will not be visible in CO and other gas molecules.  相似文献   

12.
The observations made by the Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope ( HST ) of molecular CO in absorbing gas towards X Persei are reported. The two-component statistical equilibrium model incorporating radiative excitation of CO by line emission at the same velocity that originates in nearby molecular clouds has been used to reproduce high-resolution GHRS spectra. Earlier analysis indicates that the cloud has a complex structure and at least a two-component model should be used to obtain accurate results. The spectra obtained from the International Ultraviolet Explorer ( IUE ) were used to complement GHRS data and constrain the space of possible solutions. The new oscillator strengths recommended by Eidelsberg et al. for A–X bands have been used. The results show that one of the components may be attributed to the Perseus OB2 molecular cloud, and the other component to an extension of the Taurus dark cloud. The total CO column density N (CO)=(1.0±0.2)×1016 cm−2 has been determined. According to the results about 85 per cent of the observed CO belongs to an extension of the Taurus dark cloud. The CO radiation that originates in nearby molecular clouds may be the dominant excitation mechanism of the observed CO. The early results of 13CO line analysis indicate a 13CO/12CO ratio of about 40.  相似文献   

13.
For the case in which the gas of a magnetized filamentary cloud obeys a polytropic equation of state, gravitational collapse of the cloud is studied using a simplified model. We concentrate on the radial distribution and restrict ourselves to a purely toroidal magnetic field. If the axial motions and poloidal magnetic fields are sufficiently weak, we could reasonably expect our solutions to be a good approximation. We show that while the filament experiences gravitational condensation and the density at the centre increases, the toroidal flux-to-mass ratio remains constant. A series of spatial profiles of density, velocity and magnetic field for several values of the toroidal flux-to-mass ratio and the polytropic index, is obtained numerically and discussed.  相似文献   

14.
Maps of the 450- and 850-μm dust continuum emission from three star-forming condensations within the Lynds 1630 molecular cloud, made with the SCUBA bolometer array, reveal the presence of four new submillimetre sources, each of a few solar masses (two of which are probably class I and two of which are class 0), as well as several sources the existence of which was previously known. The sources are located in filaments and appear elongated when observed at 450 μm. They probably have dust temperatures in the range 10 to 20 K, in good agreement with previous ammonia temperature estimates. Attempts to fit their structures with power-law and Gaussian density distributions suggest that the central distribution is flatter than expected for a simple singular isothermal sphere.
Although the statistics are poor, our results suggest that the ratio of 'protostellar core' mass to total virial mass may be similar for both large and small condensations.  相似文献   

15.
We report mapping observations of a 35 pc × 35 pc region covering the Sgr B2 molecular cloud complex in the 13CO (3-2) and the CS (7-6) lines using the ASTE 10 m telescope with high angular resolution. The central region was mapped also in the C18O (3-2) line. The images not only reproduce the characteristic structures noted in the preceding millimeter observations, but also highlight the interface of the molecular clouds with a large velocity jump of a few tens of km s−1. These new results further support the scenario that a cloud–cloud collision has triggered the formation of massive cloud cores, which form massive stars of Sgr B2. Prospects of exciting science enabled by ALMA are discussed in relation to these observations.  相似文献   

16.
We present the first C-shock and radiative transfer model that calculates the evolution of the line profiles of neutral and ion species like SiO, H13CO+ and HN13C for different flow times along the propagation of the shock through the unperturbed gas. We find that the line profiles of SiO characteristic of the magnetic precursor stage have very narrow linewidths and are centered at velocities close to the ambient cloud velocity, as observed toward the young shocks in the L1448-mm outflow. Consistently with previous works, our model also reproduces the broad SiO emission detected in the high velocity gas in this outflow, for the downstream postshock gas in the shock. This implies that the different velocity components observed in L1448-mm are due to the coexistence of different shocks at different evolutionary stages.  相似文献   

17.
We investigate the evolution of the magnetic flux density in a magnetically supported molecular cloud driven by Hall and Ohmic components of the electric field generated by the flows of thermal electrons. Particular attention is given to the wave transport of the magnetic field in a cloud whose gas dynamics is dominated by electron flows; the mobility of neutrals and ions is regarded as heavily suppressed. It is shown that electromagnetic waves penetrating such a cloud can be converted into helicons – weakly damped, circularly polarized waves in which the densities of the magnetic flux and the electron current undergo coherent oscillations. These waves are interesting in their own right, because for electron magnetohydrodynamics the low-frequency helicoidal waves have the same physical significance as the transverse Alfvén waves do for a single-component magnetohydrodynamics. The latter, as is known, are considered to be responsible for the widths of molecular lines detected in dark, magnetically supported clouds. From our numerical estimates for the group velocity and the rate of dissipation of helicons it follows that a possible contribution of these waves to the broadening of molecular lines is consistent with the conditions typical of dark molecular clouds.  相似文献   

18.
We investigate, by means of numerical simulations, the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using a smoothed particle hydrodynamics code which satisfies the Jeans condition by invoking on-the-fly particle splitting.
Clumps are modelled as stable truncated (non-singular) isothermal, i.e. Bonnor–Ebert, spheres. Collisions are characterized by M 0 (clump mass), b (offset parameter, i.e. ratio of impact parameter to clump radius) and     (Mach number, i.e. ratio of collision velocity to effective post-shock sound speed). The gas subscribes to a barotropic equation of state, which is intended to capture (i) the scaling of pre-collision internal velocity dispersion with clump mass, (ii) post-shock radiative cooling and (iii) adiabatic heating in optically thick protostellar fragments.
The efficiency of star formation is found to vary between 10 and 30 per cent in the different collisions studied and it appears to increase with decreasing M 0, and/or decreasing b , and/or increasing     . For   b < 0.5  collisions produce shock-compressed layers which fragment into filaments. Protostellar objects then condense out of the filaments and accrete from them. The resulting accretion rates are high,     , for the first     . The densities in the filaments,     , are sufficient that they could be mapped in NH3 or CS line radiation, in nearby star formation regions.  相似文献   

19.
The results of B -band CCD imaging linear polarimetry obtained for stars from the Hipparcos catalogue are used to re-examine the distribution of the local interstellar medium towards the IRAS 100-μm emission void in the Lupus dark clouds. The analysis of the obtained parallax–polarization diagram assigns to the dark cloud Lupus 1 a distance between 130 and 150 pc and assures the existence of a low column density region coincident with the observed infrared void. Moreover, there are clear indications of the existence of absorbing material at distances closer than 60–100 pc, which may be associated with the interface boundary between the Local Bubble and its neighbourhood Loop I superbubble.  相似文献   

20.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号