首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
The Granada ignimbrite, an Upper Miocene volcanic unit from the northern Puna, previously has been interpreted as an extensive ignimbrite (>2300 km2) associated with eruptions from the Vilama caldera (trap-door event). On the basis of new data, we revise its correlation and redefine the unit as a compound, high aspect ratio ignimbrite, erupted at approximately 9.8 Ma. Calculated volumes (100 km3) are only moderate in comparison with other large volume (>1000 km3) ignimbrites that erupted approximately 2–6 m.y. later in the region (e.g. Vilama, Panizos, Atana). Six new volcanic units are recognized from sequences previously correlated with Granada (only one sourced from the same center). Consequently, the area ascribed to the Granada ignimbrite is substantially reduced (630 km2), and links to the Vilama caldera are not supported. Transport directions suggest the volcanic source for the Granada ignimbrite corresponds to vents buried under younger (7.9–5 Ma) volcanic rocks of the Abra Granada volcanic complex. Episodes of caldera collapse at some stage of eruption are likely, though their nature and timing cannot be defined from available data. The eruption of the Granada ignimbrite marks the onset of a phase of large volume (caldera-sourced) volcanism in the northern Puna.  相似文献   

2.
《Quaternary Science Reviews》2007,26(22-24):2897-2912
The Late Cenozoic development of the River Tana in Kenya has been reconstructed for its central reach near its confluence with the River Mutonga, which drains the Mount Kenya region. Age control for this system has been provided by K–Ar and Ar–Ar dating. Between 3.21 and 2.65 Ma a major updoming occurred, in relation to the formation of the Kenyan rift valley. The tilting related to this doming has been reconstructed from lava flows that preserve former river gradients. Linear projection of these trends to the current rift valley rim suggests a net updoming of the eastern Gregory Rift valley by at least ∼1 km during 3.21–2.65 Ma. In contrast, since 2.65 Ma the Tana system has been mainly subject to relatively minor epeirogenic uplift. Changing climatic conditions combined with continuing uplift yielded a typical staircase of strath terraces with at least 10 distinct levels. A more detailed reconstruction of the incision rates since 215 ka has been made, by correlating mineralogically fingerprinted volcaniclastic Tana deposits with dated tephras in a lake record. These volcaniclastic sediments were deposited during glacial periods, contemporaneous with lahars. The reconstructed incision rates for the three youngest terraces are ∼0.1–0.2 mm a−1, thus considerably faster than the overall average rate of valley incision since the Mid-Pliocene, of 0.06 mm a−1. A plausible uplift history has been reconstructed using the estimated ages of the Tana terraces and marine terraces on the Indian Ocean coastline. The result suggests an increase in the rate of incision by the River Tana at ∼0.9 Ma, an observation typical in most European river terrace staircases. The reconstructed Late Quaternary development of Tana valley indicates that a similar Quaternary uplift mechanism has operated in both Europe and East Kenya, suggesting a globally applicable process.  相似文献   

3.
New single‐grain 40Ar/39Ar detrital white‐mica ages from the Lulehe section at the eastern Qaidam Basin yield uniform Permian ages between 250 ± 3 and 279 ± 3 Ma throughout the whole Cenozoic sequence. This is inconsistent with the present hinterland, which is composed of early Palaeozoic metamorphic units with subordinate early Palaeozoic and few Permian granites. The new data indicate that Permian tectonic units are likely more widespread at the north‐eastern margin of the Tibetan plateau as known at present, particularly within the Qilian Mountains. The preferred explanation is that the Qaidam block represents a rigid indenter, which indented during late Tertiary times into early Palaeozoic orogenic units. This is consistent with recent findings of a NW‐trending sinistral Permian ductile shear zone and a dextral, NW‐trending Tertiary fault system close to the north‐eastern margin of the Qaidam Basin.  相似文献   

4.
Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data o  相似文献   

5.
Laser-probe dating of mylonite whole-rock samples from the North Tianshan—Main Tianshan fault zone that cross-cuts the North Tianshan domain’s southern margin yielded 40Ar/39Ar spectra with 255–285 Ma ages. Biotite from an undeformed, Early Carboniferous granite, which cuts the steep mylonitic foliation in the Proterozoic basement of the Yili arcs’s southern margin, gave a 263.4 ± 0.6 Ma plateau age (1σ). Pre-Carboniferous metasediments overlying this basement yielded plateau ages (1σ) of 253.3 ± 0.3 (muscovite) and 252.3 ± 0.3 (biotite) Ma. The Permian ages of mylonites date movement on these ductile, dextral strike-slip shear zones, whereas the mica ages are interpreted by recrystallisation as a result of fluid flow around such transcurrent faults. We propose that the Tianshan’s Permian syn-tectonic bimodal magmatism was created in a non-plume-related Yellowstone-like extensional–transtensional tectonic regime. Gold mineralisation, tracing aqueous flow in the crust, peaked in Permian time and continued locally into the Triassic. The picture is emerging that a convective fluid system partly driven by magmatic heat, existed in a strongly fractured and weakened crust with an elevated heat flow, leading to regional-scale isotope resetting. We suggest that surprisingly young isotopic ages in the literature for early orogenic (ultra)high-pressure metamorphism are similarly due to fluid-mediated recrystallisation.  相似文献   

6.

Basalt at Sassafras was erupted in the Middle Eocene. The K‐Ar ages average 45.3 ± 4.9 Ma on whole rock and 48.4 ± 1.9 Ma on plagioclase. The basalt is not limited to a plateau capping, but extends 150 m down into adjacent valleys. Comparison with nearby Eocene basalts shows that there was in excess of 250 m of local relief in the central Shoalhaven valley by the Early Tertiary. The basalts were extruded at high elevation, and denudation of the coastal margin of the upland was already well advanced. Post‐basaltic denudation has been very slow, and the Early Tertiary landscape is well preserved.  相似文献   

7.
Three metapelite samples from the Aksu blueschist terrane, Xinjiang, China, were dated by the 40Ar/39Ar method on separated phengite grains, obtaining plateau ages in the range of 741−757 Ma. In contrast, the measured Rb and Sr isotope data for the three samples yielded isochron ages ranging from 630 Ma to 900 Ma, suggesting large heterogeneity in the blueschist protolith and suppression of diffusional exchange owing to the low-temperature metamorphic conditions. Because the protolith of Aksu blueschist is composed of oceanic materials that formed 40Ar-free phengite during HP and UHP metamorphism and the apparent 40Ar/39Ar plateaus ages in this study are similar to previous K–Ar and Rb–Sr ages, the existence of excess argon in these rocks is considered to be insignificant. As a result, the 40Ar/39Ar plateau ages in this study (ca. 750 Ma) likely represent the approximate time for peak metamorphism, given the low peak metamorphic temperatures for the Aksu blueschist terrane (300−400 °C). This strongly implies that modern style, cold subduction tectonics operated along the margin of the Aksu terrane no later than 750 Ma, in Neoproterozoic time.  相似文献   

8.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

9.
Yigui  Shihong  Franco  Yu  Yuanhou   《Gondwana Research》2009,16(2):255
The Machaoying fault zone extends along the southern margin of the North China Craton (NCC) and controlled the regional structures and hydrothermal mineral systems in this area. The fault underwent at least two major deformational phases, as revealed by macro- and micro-structural observations from a well-developed segment of the fault in the Hongzhuang–Baitu area, located south of the Xiong'er Mountains. Early ductile deformation is characterized by thrusting from north to south, which was subsequently overprinted by late brittle faulting. Syntectonic strain shadows of biotite are preserved around rotated porphyroclasts of quartz amygdales in mylonite. The biotite yields a 40Ar–39Ar plateau age of 524.9 ± 1.9 Ma, which is interpreted as the time of regional thrusting along the Machaoying fault zone. The thrusting may be temporally correlated with an Early Cambrian discontinuity in sedimentation observed in the rocks sequences of the NCC, suggesting a compressional regime in this area and a craton-wide tectonic event. Many 540–500 Ma tectonic events have been previously identified in the Qinling–Qilian–Kunlun Orogenic Belt of central China and in massifs in northeastern China, both of which surround the NCC, and some of these were interpreted to be associated with assembly of Gondwana. However, paleomagnetic data indicate that the NCC was unlikely to have been connected with Gondwana in the Early Cambrian and thus our new biotite date cannot record deformation along the Gondwanan margin. Dating of K-feldspar from a quartz–K-feldspar vein formed along one of the brittle faults of the Machaoying fault zone yields a much younger 40Ar–39Ar plateau age of 119.5 ± 0.7 Ma. This is a minimum age for the brittle deformation along the southern margin of the NCC, which also overlaps the age of widespread gold and molybdenum mineralization in the region.  相似文献   

10.
Cenozoic lamprophyre dykes occur widely along the Ailao-Shan-Red-River (ASRR) shear zone related to the Indian–Eurasian collision. Two generations of lamprophyres have been found at the Daping gold deposit in the southern part of the ASRR shear zone and have been investigated by using phlogopite 40Ar/39Ar dating and whole-rock major and trace element as well as Sr and Nd isotope geochemical analyses. The 40Ar/39Ar plateau ages of phlogopite from the two generations of lamprophyres bracket the emplacement of auriferous quartz veins in the Daping deposit between 36.8 ± 0.2 Ma and 29.6 ± 0.2 Ma, consistent with the timing of gold mineralization in other parts of the ASRR shear zone. Geochemical data suggest that these lamprophyres most likely originated from a subduction-modified mantle source consisting of phlogopite-bearing spinel lherzolite, which underwent partial melting with contributions from crust materials. In particular, the second generation lamprophyres are characterized by more primitive geochemical features than the first, suggesting that secular source evolution probably resulted from post-collisional slab break-off mantle convection and remelting from ascending asthenosphere after subducted lithosphere break-off. Widespread and episodic occurrences of lamprophyres and other potassic volcanism in the eastern Tibetan Plateau were probably related to the onset of transtensional tectonics along the ASRR shear zone during Oligocene. A genetic model involving transtensional tectonics has been proposed for lamprophyres and gold mineralization in the ASRR shear zone.  相似文献   

11.
High-angle normal faulting in eastern China was an important tectonic process responsible for the rifting of the eastern Asian continental margin. Along the southern segment of the Tan-Lu fault system, part of the eastern China rift-system, 55–70° east-dipping normal faults are the oldest structures within this rift-system. Chlorite, pseudotachylite, and fault breccia are found in fault zones, which are characterized by microstructures and syn-deformation chlorite minerals aligned parallel to a down-dip stretching lineation. 40Ar/39Ar dating of syn-deformation chlorite and K-feldspar from the fault gouge zone yields cooling ages of ~75–70 Ma, interpreted as the timing of slip along the normal faults. This age is older than that of opening of the Japanese sea and back-arc extension in the west Pacific, but similar to the onset of the Indo-Asian (soft?) collision.  相似文献   

12.
New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle–Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle–Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian–Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE–SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/39Ar analyses of muscovite from the earliest cleavage in the Las Minas unit yielded a plateau age of 347 ± 3 Ma and show low temperature ages of  260 Ma. Post-dating all of these structures and the Patlanoaya Group are NE-plunging, subvertical folds and kink bands. An E–W, vertical normal fault juxtaposes the low-grade rocks against the Anacahuite amphibolite that is cut by megacrystic granite sheets, both of which were deformed by two penetrative fabrics. Amphibole from this unit has yielded a 40Ar/39Ar plateau age of 299 ± 6 Ma, which records cooling through  490 °C and is probably related to a Permo-Carboniferous reheating event during exhumation. The extensional deformation is inferred to have started in the latest Devonian ( 360 Ma) during deposition of the basal Patlanoaya Group, lasting through the rapid exhumation of the Piaxtla Suite at  350–340 Ma synchronous with cleavage development in the Las Minas unit, deposition of the Patlanoaya Group with active fault-related exhumation suggested by Mississippian and Early Permian conglomerates ( 340 and 300 Ma, respectively), and continuing at least into the Middle Permian (≡ 260 Ma muscovite ages). The continuity of Mid-Continent Mississippian fauna from the USA to southern Mexico suggests that this extensional deformation occurred on the western margin of Pangea after closure of the Rheic Ocean.  相似文献   

13.
Yu Wang 《地学学报》2006,18(6):423-431
In eastern China, the Dabie Shan–Su–Lu orogenic belt has been separated by the Tan–Lu sinistral strike–slip fault. Mylonites are exposed along the strike–slip fault system in the southern segment, and along the eastern margin of the Dabie Shan orogenic belt. The country rocks of the mylonites are retrograde UHP eclogites, gneissic granites, muscovite granites and gneisses. The ductile strike–slip shear zone trends 30–40°N (NE30–40°‐trending) and exhibits stretching lineations and nearly vertical, SE‐dipping foliations. Most of the zircon grains separated from mylonites have a weighted average radiometric age of 233 ± 6–225 ± 6 Myr. These data constrain the onset of the Tan–Lu sinistral strike–slip movement and imply that the Tan–Lu sinistral strike–slip motion developed after retrograde UHP metamorphism. The related phengite within the eclogite rocks on the western side of the Tan–Lu fault, with 40Ar/39Ar plateau ages of c. 182–190 Myr, is also deformed and aligned parallel to the almost NE trending stretching lineations. Non‐metamorphosed granites exhibit sinistral strike–slip shearing and indicate that the Tan–Lu fault initially developed after 182–190 Myr. Muscovite collected from the mylonite yields 40Ar/39Ar plateau ages of 162 ± 1–156 ± 2 Myr. The zircon SHRIMP age data, the muscovite 40Ar/39Ar plateau ages, together with structural and petrological field information support the interpretation that the Tan–Lu strike–slip fault was not related to the Yangtze–north China plates collision, but corresponded to the formation of a NE‐trending tectonic framework in eastern China starting c. 165–160 Ma.  相似文献   

14.
华北地块南缘中段中生代花岗质岩石的40Ar-39Ar年代学研究   总被引:6,自引:4,他引:2  
对华北地块南缘4个中生代花岗质岩体中的角闪石和黑云母进行了40Ar-39Ar定年研究。结果表明,陕西黑山村岩体黑云母花岗闪长岩中黑云母的40Ar-39Ar坪年龄为126. 6±0. 3Ma,河南马家湾岩体细粒黑云母花岗闪长岩中黑云母的40Ar-39Ar坪年龄为126. 6±0. 2Ma,河南洛宁南八百坡岩体黑云母二长花岗岩中角闪石的40Ar-39Ar坪年龄为128. 3±0. 3Ma,山西蚕坊岩体花岗闪长岩中角闪石的40Ar-39Ar坪年龄为129. 2±0. 2Ma。上述结果显示华北地块南缘中生代的岩浆活动主要发生在早白垩世。该期岩浆的产生应与中国东部早白垩世的伸展环境相联系。  相似文献   

15.
The Cihai iron skarn deposit is located in the southern part of the eastern Tianshan, Xinjiang, northwestern China. The major iron orebodies are banded and nearly parallel to each other. The iron ores are hosted in an early diabase dike and in skarn. Post-ore diabase dikes cut the iron ores and their hosting diabase. Hydrothermal activity can be divided into four stages based on geological and petrographic observations: initial K–Na alteration (stage I), skarn-minor magnetite event (II), retrograde skarn-magnetite main ore event (III), and quartz–calcite–sulfide veining (IV). Zircon U–Pb dating yields ages of 286.5 ± 1.8 Ma for early diabase and 275.8 ± 2.2 Ma for post-ore diabase dikes. Amphibole separated from massive magnetite ore gives a 40Ar–39Ar plateau age of 281.9 ± 2.2 Ma and is the time of ore formation. Formation of the Cihai iron deposit is closely related to post-collisional magmatism and associated Cu–Ni–Au polymetallic mineralization in the eastern Tianshan.  相似文献   

16.
The Sistan Suture Zone (SSZ) of eastern Iran is part of the Neo‐Tethyan orogenic system and formed by convergence of the Central Iranian and Afghan microcontinents. Ar Ar ages of ca. 125 Ma have been obtained from white micas and amphibole from variably overprinted high‐pressure metabasites within the Ratuk Complex of the SSZ. The metabasites, which occur as fault‐bounded lenses within a subduction mélange, document peak‐metamorphic conditions in eclogite or blueschist facies followed by near‐isothermal decompression resulting in an epidote–amphibolite‐facies overprint. 40Ar/39Ar step heating experiments were performed on a phengite + paragonite mixture from an eclogite, phengites from two amphibolites, and paragonite from a blueschist; ‘best‐fit’ ages from these micas are, respectively, 122.8 ± 2.2, 124 ± 13, 116 ± 19 and 139 ± 19 Ma (2σ error). Barroisite from an amphibolite yielded an age of 124 ± 10 Ma. The ages are interpreted as cooling ages that record the post‐epidote–amphibolite stage in the exhumation of the rocks. Our results imply that both the high‐pressure metamorphism and the epidote–amphibolite‐facies overprint occurred prior to 125 Ma. Subduction of oceanic lithosphere along the eastern margin of the Sistan Ocean had therefore begun by Barremian (Early Cretaceous) times. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Furong, Hunan, is a large tin orefield discovered in China in recent years, which is mainly of the skarn-greisen-chlorite type. On the basis of the geological characteristics of the orefield, 40Ar-39Ar dating was performed on muscovite from greisen-type tin ore and biotite from related amphibole-biotite granite, which yielded three sets of age data, i.e., a plateau age of 157.5±0.3 Ma and an isochron age of 156.9±3 Ma for amphibole-biotite granite; a plateau age of 156.1±0.4 Ma and an isochron age of 155.7±1.7 Ma for the Sanmen greisen-type tin ore; and a plateau age of 160.1±0.9 Ma and an isochron age of 157.5±1.5 Ma for the Taoxiwo greisen-type tin ore. The three sets of age data coincide well with each other. They not only accurately reflect the timing of rock and ore formation but also indicate close relations between granite and tin deposits. In addition, the plateau ages of all three sets suggest that no subsequent thermal perturbation event occurred after the formation of granite and tin dep  相似文献   

18.
塔里木南缘煌斑岩的时代及其地质意义   总被引:7,自引:2,他引:7       下载免费PDF全文
郭坤一  张传林  赵宇  董永观  王爱国 《地质科学》2003,38(4):532-534,518
在塔里木南缘皮山县境内发现东西向煌斑岩带,它们呈脉状产出,围岩为前寒武纪绢云绿泥石英片岩、变质粉砂岩及石炭纪玄武岩、结晶灰岩等。岩石地球化学特征与典型地区的钾镁煌斑岩相似。从煌斑岩中挑选的金云母经ArAr测年,获得理想的坪年龄为217.65±0.39Ma,40Ar/36Ar39Ar/36Ar等时线年龄为217.27±1.38Ma,与坪年龄一致。这一年龄值代表了煌斑岩的形成时代,与阿尔金断裂形成时代基本一致,它代表了塔里木南缘在这一时期重要的走滑事件。煌斑岩带的发现,对塔里木南缘的金刚石找矿勘查具有重要意义。  相似文献   

19.
40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. Phlogopite from the Zhongshan-Gushan ore field has a plateau age of 126.7±0.17 Ma and an isochron age of 127.21±1.63 Ma. Analysis of regional geodynamic evolution of the middle-lower Yangtze River region suggests that the porphyry iron deposits were formed as a result of large-scale lithosphere delamination and strong sinistral strike-slip movement of the Tancheng Lujiang fault zone. The copper, molybdenum and gold deposit system in the middle-lower Yangtze River region was formed during the stress transition period of the eastern China continent.  相似文献   

20.
The large Huamei'ao tungsten deposit, with total WO3 reserves of 67,400 tons at an average grade of 1.334% WO3, is located in the convergent zone of the eastern Nanling E–W-trending tectono-magmatic belt and the western Wuyishan NNE–SSW-trending tectono-magmatic belt in southern Jiangxi Province, China. The tungsten mineralization in this deposit is mainly found in quartz–wolframite veins, with most orebodies distributed at the outer contact zone between concealed Late Jurassic granitic stocks and Sinian weakly metamorphosed sandstones and phyllites. Zircons collected from medium- to fine-grained biotite granite in a diamond drill hole at a sea level of ca. − 10 m yield a crystallization age of 159.9 (± 1.2) Ma through laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS) U–Pb dating. Molybdenite and muscovite that were both separated from quartz–wolframite veins yield a Re–Os isochron age of 158.5 (± 3.3) Ma and an 40Ar–39Ar weighted plateau age of 157.9 (± 1.1) Ma, respectively. These dates, obtained via three independent geochronological techniques, constrain the ore-forming age of the Huamei'ao deposit and link the genesis of the ore and the underlying granite. Analyses of available high-precision zircon U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar radiometric ages of major W–Sn deposits in southern Jiangxi Province indicate that there is no significant time interval between W–Sn mineralization and its intimately associated parent granite emplacement (interval of 0–6 Ma). These deposits formed over three intervals during the Mesozoic (240–210, 170–150, and 130–90 Ma), with large-scale W–Sn mineralization occurring mainly between 160 and 150 Ma. The majority of W–Sn deposits in this region are located in southern Jiangxi and southern Hunan provinces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号