首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early Paleozoic magmatism of the Tannuola terrane located in the northern Central Asian Orogenic Belt is important to understanding the transition from subduction to post-collision settings. In this study, we report in situ zircon U-Pb ages, whole rock geochemistry, and Sr-Nd isotopic data from the mafic and granitic rocks of the eastern Tannuola terrane to better characterize their petrogenesis and to investigate changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal three magmatic episodes for about 60 Ma from ∼510 to ∼450 Ma, that can be divided into the late Cambrian (∼510–490 Ma), the Early Ordovician (∼480–470 Ma) and the Middle-Late Ordovician (∼460–450 Ma) stages. The late Cambrian episode emplaced the mafic, intermediate and granitic rocks with volcanic arc affinity. The late Cambrian mafic rocks of the Tannuola terrane may originate from melting of mantle source that contain asthenosphere and subarc enriched mantle metasomatized by melts derived from sinking oceanic slab. Geochemical and isotopic compositions indicate the late Cambrian intermediate-granitic rocks are most consistent with an origin from a mixed source including fractionation of mantle-derived magmas and crustal-derived components. The Early Ordovician episode reveal bimodal intrusions containing mafic rocks and adakite-like granitic rocks implying the transition from a thinner to a thicker lower crust. The Early Ordovician mafic rocks are formed as a result of high degree melting of mantle source including dominantly depleted mantle and subordinate mantle metasomatized by fluid components while coeval granitic rocks were derived from partial melting of the high Sr/Y mafic rocks. The latest Middle-Late Ordovician magmatic episode emplaced high-K calc-alkaline ferroan granitic rocks that were formed through the partial melting the juvenile Neoproterozoic sources.These three episodes of magmatism identified in the eastern Tannuola terrane are interpreted as reflecting the transition from subduction to post-collision settings during the early Paleozoic. The emplacement of voluminous magmatic rocks was induced by several stages of asthenospheric upwelling in various geodynamic settings. The late Cambrian episode of magmatism was triggered by the slab break-off while subsequent Early Ordovician episode followed the switch to a collisional setting with thickening of the lower crust and the intrusion of mantle-induced bimodal magmatism. During the post-collisional stage, the large-scale lithospheric delamination provides the magma generation for the Middle-Late Ordovician granitic rocks.  相似文献   

2.
Zircon U–Pb ages and geochemical and isotopic data for Late Ordovician granites in the Baoshan Block reveal the early Palaeozoic tectonic evolution of the margin of East Gondwana. The granites are high-K, calc-alkaline, metaluminous to strongly peraluminous rocks with A/CNK values of 0.93–1.18, are enriched in SiO2, K2O, and Rb, and depleted in Nb, P, Ti, Eu, and heavy rare earth elements, which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed at ca. 445 Ma. High initial 87Sr/86Sr ratios of 0.719761–0.726754, negative ?Nd(t) values of –6.6 to –8.3, and two-stage model ages of 1.52–1.64 Ga suggest a crustal origin, with the magmas derived from the partial melting of ancient metagreywacke at high temperature. A synthesis of data for the early Palaeozoic igneous rocks in the Baoshan Block and adjacent Tengchong Block indicates two stages of flare-up of granitic and mafic magmatism caused by different tectonic settings along the East Gondwana margin. Late Cambrian to Early Ordovician granitic rocks (ca. 490 Ma) were produced when underplated mafic magmas induced crustal melting along the margin of East Gondwana related to the break-off of subducted Proto-Tethyan oceanic slab. In addition, the cession of the mafic magmatism between late Cambrian-Early Ordovician and Late Ordovician could have been caused by the collision of the Baoshan Block and outward micro-continent along the margin of East Gondwana and crust and lithosphere thickening. The Late Ordovician granites in the Baoshan Block were produced in an extensional setting resulting from the delamination of an already thickened crust and lithospheric mantle followed by the injection of synchronous mafic magma.  相似文献   

3.
藏北羌塘早古生代岩浆作用及其构造演化对研究青藏高原早期演化历史以及羌塘盆地基底性质结构等具有重要科学意义。本文在综述前人研究基础上,系统总结了藏北羌塘地区早古生代岩浆岩的时空分布特征及年代学格架,初步探讨了青藏高原早古生代构造-岩浆事件对冈瓦纳大陆北缘构造演化以及羌塘盆地基底属性的约束。羌塘地区早古生代岩浆岩主要分布在日湾茶卡、都古尔、戈木日、本松错等地区,岩性以变质辉长岩、变质玄武岩、安山岩、花岗岩、变质流纹岩以及花岗片麻岩等为主。基于区域地质调查和年代学研究结果,羌塘地区早古生代发生了多期岩浆作用,分别为~500 Ma、~482 Ma、~474 Ma、~455 Ma、~438 Ma。这些岩浆岩可能是泛非造山运动结束后,冈瓦纳大陆北缘岩石圈伸展减薄的产物,并构成了羌南-保山板块早古生代的结晶基底,但有关伸展减薄的机制问题仍需开展进一步的研究工作,这些地质记录对恢复和反演青藏高原冈瓦纳大陆北缘的陆缘性质具有重要约束意义。  相似文献   

4.
柴北缘乌兰县二郎洞地区的达肯大坂岩群主要由黑云斜长片麻岩、混合岩、黑云母石英片岩、斜长角闪岩和大理岩、花岗片麻岩等共同组成。本文首次对两件混合岩化黑云斜长片麻岩样品中的锆石进行了内部结构分析和SHRIMP测年, 黑云斜长片麻岩中的锆石大多具有核-边结构, 核部和边部分别表现为典型的岩浆和变质成因锆石特征。一件样品中锆石核部206 Pb/238 U加权平均年龄为503.8±5.1 Ma, 边部206 Pb/238 U加权平均年龄为449±9.9 Ma; 另一件样品核部206 Pb/238 U加权平均年龄为493.6±4.5 Ma。这些结果表明, 乌兰县二郎洞地区达肯大坂岩群中的混合岩化黑云斜长片麻岩原岩形成年龄为504~494 Ma, 属于晚寒武世岩浆活动的产物, 变质年龄为449 Ma, 分别与柴北缘岛弧岩浆作用和超高压变质作用的时限相一致。研究表明, 二郎洞地区达肯大坂岩群不仅有新太古代-古元古代基底岩石, 还包含早古生代的岩石组合, 为一套不同性质和不同时代的混杂岩。  相似文献   

5.
高利娥  曾令森  许志琴  王莉 《岩石学报》2015,31(5):1200-1218
青藏高原是由复合地体和复合造山拼贴体组成,是新元古代以来长期活动、多期造山及新生代最后隆升的基础上形成的高原。最近在马拉山-吉隆构造带中厘定出形成于445~431Ma的碎屑锆石,包括岩浆成因和变质成因,以及447Ma的变质事件,比已有关于安第斯型造山作用的认识晚30~60Myr。主量、微量和同位素特征显示志留纪片麻岩具有和奥陶纪花岗岩一致的地球化学特征,属于同一套岩石。综合已有现象推断出:喜马拉雅地区古生代构造事件持续时间更长,微陆块与冈瓦纳大陆北缘的碰撞作用可能发生在志留纪,引发奥陶纪的岩浆岩发生变质作用,以及志留纪的岩浆活动,这些热事件属于加里东期构造作用。  相似文献   

6.
The Paleo‐Tethys Ocean was a Paleozoic ocean located between the Gondwana and Laurasia supercontinents. It was usually consider to opening in the early Paleozoic with the rifting of the Hun superterrane from Gondwana following the subduction of the Rheic Ocean/proto‐Tethys Ocean. However, the opening time and detailed evolutionary history of the Paleo‐Tethys Ocean are still unclear. The Paleozoic ophiolites have recently been documented in the middle of the Qiangtang terrane, northern Tibetan Plateau, and they mainly occur in the Gangma Co area. These ophiolites are composed of serpentinite, pyroxenite, isotropic and cumulate gabbros, basalt, hornblendite and plagiogranite. Whole‐rock geochemical data suggest that all mafic rocks were formed in an oceanic‐ridge setting. Furthermore, positive whole‐rock εNd(t) and zircon εHf(t) values suggest that these rocks were derived from a long‐term depleted mantle source. The data allow us to conform that these rocks represent an ophiolite suite. Zircon U‐Pb dating of gabbros and plagiogranites yielded weighted mean ages of 437‐501 Ma. The occurrence of the ophiolite suite suggests that a Paleozoic Ocean basin (Paleo‐Tethys) existed in middle of the Qiangtang terrane. We hypothesize that the ophiolite in the middle of the Qiangtang terrane represents the western extension of the Sanjiang Paleo‐Tethys ophiolite in the east margin of the Tibetan Plateau, and they mark the main Paleo‐Tethys Ocean. This is the oldest ophiolite from the Paleo‐Tethyan suture zones and the Paleo‐Tethys Ocean basin probably opened in the Middle Cambrian, and continued to grow throughout the Paleozoic. The ocean was finally closed in the Middle to Late Triassic as inferred from the metamorphic ages of eclogite and blueschist that occur nearby. The Paleo‐Tethys Ocean was probably formed by the breakup of the northern margin of Gondwana, with southward subduction of the proto‐Tethys oceanic lithosphere along the northern margin of the supercontinent.  相似文献   

7.
徐亚军  杜远生 《地球科学》2018,43(2):333-353
华南的广西运动被认为是发生在早古生代的陆内造山作用,然而触发陆内变形的地球动力学机制仍然不清.广西运动形成了泥盆系与下伏岩石之间广泛的不整合面以及分布在局部地区的下古生界内部的多个不整合面.广西运动期间的构造热事件和古生物响应时间在460~380 Ma,时间上对应于奥陶系和泥盆系之间的多个不整合,而分布在华南南缘的寒武系和奥陶系之间的不整合面(郁南运动)仅与少量的530~480 Ma之间的变质事件相当,但是却同步于广泛分布在东冈瓦纳北缘的造山事件.华南南部寒武系-奥陶系不整合面上下的碎屑锆石年代学研究表明,早古生代华南与印度北缘相连,而三亚地块在寒武纪是澳大利亚西缘的一部分,直到奥陶纪才与华南拼合,同步于冈瓦纳最终的聚合.郁南运动之后,华夏板块处于冈瓦纳内部,来自冈瓦纳东缘造山作用的应力向大陆内部传播,在具有弱流变学性质的南华盆地聚集,导致盆地构造反转,触发了广西运动.早古生代的华南经历了从板缘碰撞(郁南运动)到陆内造山(广西运动)的演化过程.   相似文献   

8.
New SIMS U-Pb (zircon) data for intrusive rocks of the Macquarie Arc and adjacent granitic batholiths of the Lachlan Orogen (southeastern Australia) provide insight into the magmatic and tectonic evolution of the paleo-Pacific Gondwana margin in the early Paleozoic. These data are augmented by Re-Os dates on molybdenite from four Cu-Au mineralised porphyry systems to place minimum age constraints on igneous crystallization. The simplicity of the zircon age distributions, and absence of older inheritance, stands in contrast to previous geochronological studies. The earliest magmatism within the Macquarie Arc is registered by a ca. 503 Ma gabbro from the Monza igneous complex, whereas a monzodiorite from the same drillhole records the youngest (ca. 432 Ma). Igneous activity in the Macquarie Arc thus overlapped deformation and magmatism in the craton-proximal Delamerian Orogen to the west, and the emplacement of the Lachlan granitic batholiths at 435–430 Ma; the thermal pulse associated with the latter may have triggered the formation of richly mineralised Silurian porphyries in the Macquarie Arc. The juvenile Hf isotope signature of the Monza Gabbro, together with the lack of zircon inheritance and the radiogenic Hf-Nd isotope systematics of Ordovician Macquarie Arc rocks, is consistent with early development of the arc, or a precursor magmatic belt, in an oceanic setting remote from continental influences, and with the arc being built on primitive Cambrian mafic crust. Outboard arc magmatism in the Cambrian may have initiated in response to convergent Delamerian orogenesis adjacent the Gondwana margin. Overlapping radiogenic isotope-time trends are consistent with the evolution of the Macquarie Arc and the Gondwana continental margin being linked from the Cambrian to the Silurian. These data provide further evidence for the growth of continental crust along the southeastern Australian segment of this margin being related to the dynamics of an extensional accretionary orogenic system.  相似文献   

9.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

10.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

11.
In the external units of the Sardinian Variscides Nappe Zone, volcanic and volcanoclastic successions of Middle Ordovician age follow Lower Paleozoic calc-alkaline magmatism developed at the northern Gondwana margin. We present geochemical and zircon U–Pb isotopic data for the Truzzulla Formation, a low-to-medium-grade metamorphic volcanic–volcanoclastic succession belonging to the Monte Grighini Unit, the deepest unit in the Nappe Zone. Geochemical and radiometric data allow us to define a Late Ordovician (Katian) magmatic (volcanic) event of calc-alkaline affinity. These new data, in conjunction with previously published data, indicate that in the Sardinian Variscides, the age of Lower Paleozoic Andean-type calc-alkaline magmatism spans from Middle to Late Ordovician. Moreover, the age distribution of calc-alkaline volcanics and volcanoclastic rocks in the Nappe Zone is consistent with a diachronous development of Middle–Late Ordovician Andean-type magmatic arc through the portion of the northern Gondwanian margin now represented by the Sardinian Variscides. This reconstruction of the Sardinian Variscides reflects the complex magmatic and tectonic evolution of the northern margin of Gondwana in the Lower Paleozoic.  相似文献   

12.
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.  相似文献   

13.
We report a Middle Ordovician metagranitoid from the northern margin of the Anatolide‐Tauride Block, the basement of which is generally characterized by voluminous Latest Proterozoic to Early Cambrian granitoids. The Ordovician metagranitoid forms an ~400‐m‐thick body in the marbles and micaschists of the Tav?anl? Zone. The whole sequence was metamorphosed in the blueschist facies during the Late Cretaceous (c. 80 Ma). Zircons from the metagranitoid give a Middle Ordovician Pb‐Pb evaporation age of 467.0 ± 4.5 Ma interpreted as the age of crystallization of the parent granitic magma. The micaschists underlying the metagranitoid yield Cambro‐Ordovician (530–450 Ma) and Carboniferous (c. 310 Ma) detrital zircon ages indicating that the granitoid is a pre‐ or syn‐metamorphic tectonic slice. The Ordovician metagranitoid represents a remnant of the crystalline basement of the Anatolide‐Tauride Block and provides evidence for Ordovician magmatism at the northern margin of Gondwana. Prismatic Carboniferous detrital zircons in the micaschists indicate that during the Triassic, the northern margin of the Anatolide‐Tauride Block was close to Variscan terranes.  相似文献   

14.
The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in the Variscan blocks incorporated in the Ligurian Alps because they experienced low temperature Alpine metamorphism. During the Paleozoic, these blocks, together with the other Alpine basements, were placed between the Corsica-Sardinia and the Bohemian Massif along the northern margin of Gondwana. In this framework, they host several a variegated lithostratigraphy forming two main complexes(Complexs I and II) that can be distinguished by both the protoliths and their crosscutting relationships, which indicate that the acidic and mafic intrusives of Complex II cut an already folded sequence made of sediments, basalts and granitoids of Complex I. Both complexes were involved in the Variscan orogenic phases as highlighted by the pervasive eclogite-amphibolite facies schistosity(foliation II). However, rare relicts of a metamorphic foliation at amphibolite facies conditions(foliation I)is locally preserved only in the rocks of Complex I. It is debatable if this schistosity was produced during the early folding event e occurred between the emplacement of Complex I and II e rather than during an early stage of the Variscan metamorphic cycle.New SHRIMP and LA ICP-MS Ue Pb zircon dating integrated with literature data, provide emplacement ages of the several volcanic or intrusive bodies of both complexes. The igneous activity of Complex I is dated between 507 ± 15 Ma and 494 ± 5 Ma, while Complex II between 467 ± 12 Ma and 445.5 ± 12 Ma.The folding event recorded only by the Complex I should therefore have occurred between 494 ± 5 Ma and 467 ± 12 Ma. The Variscan eclogite-amphibolite facies metamorphism is instead constrained between ~420 Ma and ~300 Ma. These ages and the geochemical signature of these rocks allow constraining the Early Paleozoic tectono-magmatic evolution of the Ligurian blocks, from a middleeupper Cambrian rifting stage, through the formation of an Early Ordovician volcanic arc during the Rheic Ocean subduction, until a Late Ordovician extension related to the arc collapse and subsequent rifting of the PaleoThetys. Furthermore, the ~420-350 Ma ages from zircon rims testify to thermal perturbations that may be associated with the Silurian rifting-related magmatism, followed by the subduction-collisional phases of the Variscan orogeny.  相似文献   

15.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

16.
报道了塔里木库鲁克塔格地区新元古代晚期花岗闪长岩和钾长花岗岩的锆石U-Pb年龄和Hf同位素组成。花岗闪长岩锆石U-Pb谐和年龄为630.1±1.3Ma,钾长花岗岩锆石U-Pb谐和年龄为630.6±1.3Ma。Hf同位素组成表明,这2种岩石主要来自古老(中)基性地壳的重熔,可能有部分地幔物质的加入。结合已有的研究表明,650~615Ma期间的岩浆活动代表了塔里木地块新元古代最晚期的岩浆活动,是Rodinia超大陆解体过程中的产物,与泛非造山事件无关。塔里木地块自新元古代中期到早寒武世,持续接受了被动大陆边缘沉积,表明在这一时期塔里木为冈瓦那大陆之外独立的大陆块体,或是位于冈瓦那大陆最边缘的稳定大陆块体。  相似文献   

17.
仲巴地体是雅鲁藏布江缝合带西段南北蛇绿岩带之间的重要构造单元,目前对其是否存在早古生代构造-热事件记录及构造属性判别尚不明确.通过野外观测、岩石地球化学研究和年代学分析,在仲巴地体中段的公珠错一带识别出一套侵入到黑云斜长片麻岩中的片麻状二长花岗岩,其锆石U-Pb年龄为~478 Ma,表明岩石形成时代为早奥陶世;该套花岗岩具有高Si、富Al和总碱含量较高的特点,铝饱和指数A/CNK=1.13~1.20,富集大离子亲石元素Rb、K,相对亏损Ba、Sr、Nb、Ti等,属于钙碱性强过铝质花岗岩.这是首次在雅鲁藏布江缝合带西段仲巴地体内部识别出代表早奥陶世构造-热事件的地质记录,该套花岗岩形成过程与原特提斯洋向冈瓦纳大陆北缘俯冲结束后的上地壳熔融相关,证明仲巴地体在早古生代应为东冈瓦纳大陆北缘的组成部分.   相似文献   

18.
野外地质调查和SHRIMP锆石U-Pb地质年代学研究在藏南雅拉香波地区厘定了一规模较大,形成于273.0±2.2Ma的辉绿岩体。该辉绿岩体侵入到由页岩和细砂岩组成的特提斯沉积岩中,表明这些沉积岩形成时间早于晚二叠纪,而不是晚三叠纪地层。该岩体具有以下地球化学特征:(1)富集LREE,亏损HREE;(2)高场强元素含量较高;(3)较高的Sr(87Sr/86Sr(t)=0.7063~0.7078)和Nd(εNd(t)=-1.1~-2.4)同位素组成,与西部同时代溢流玄武岩相当;及(4)较高的εHf(t)(+2.5~+3.9)。本研究及已有数据表明:沿新特提斯带发育一系列晚二叠纪基性岩浆岩,是冈瓦纳大陆北缘裂解和新特提斯洋初始张开时深部岩浆作用的产物。  相似文献   

19.
陆露  钱程  赵珍  吴珍汉  刘玉双  周亮  王岩 《地球科学》2018,43(4):1110-1124
为了加深对班公湖-怒江缝合带构造演化过程的认识,选择聂荣微陆块内的花岗质片麻岩和花岗闪长质片麻岩中的锆石进行LA-ICP-MS U-Pb定年,结果主要显示两组206Pb/238U的加权平均年龄:一组为453.7±2.5 Ma; 另一组为176.6±1.1 Ma和178.04±0.8 Ma.花岗质片麻岩中黑云母和花岗闪长质片麻岩中白云母的40Ar-39Ar定年结果显示,坪年龄分别为161.8±1.1 Ma和178.9±1.2 Ma.上述年龄结果表明,聂荣微陆块主要经历了晚奥陶世和早侏罗世两期岩浆事件,这两期岩浆事件分别与冈瓦纳大陆北缘早古生代的造山作用和班公湖-怒江洋壳的俯冲闭合存在密切的动力学关系.   相似文献   

20.
西藏班戈地区构造单元属北拉萨地体,到目前为止,该地体尚未有寒武纪岩浆活动的报道.本文就班戈地区首次发现的辉长闪长岩体,在野外地质调查、元素地球化学及同位素年代学研究的基础上,得出以下结论:该岩体属高钾钙碱性系列,具有富集大离子亲石元素(如Rb、Ba)和轻稀土元素(La、Ce),亏损Nb、Ta、Zr、Hf和Ti等高场强元素,呈现出安第斯型岛弧岩浆特征,显示该岩体是俯冲沉积物部分熔融形成的熔体交代上覆地幔楔的产物.锆石U-Pb年代学指示其侵入年龄为512 ±3 Ma,形成于寒武纪,为北拉萨地体存在早古生代岩浆活动提供了可靠的年代学证据.综合证实其属于冈瓦纳大陆北缘的一部分,该成果为进一步探讨青藏高原的构造演化提供了新的约束.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号