首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究强震区桥梁跨活动断层时,桩基在地震中的动力响应,以海文大桥为工程背景,利用Midas GTS有限元软件建立其强震区桩-海床岩土体-断层耦合作用的数值模型,研究不同强度(0.20g~0.60g)的50年超越概率为10%的地震波(后文简称5010地震波)作用下,桥梁桩基加速度、位移、弯矩及剪力的动力时程响应特性。结果表明:上部大厚度松散土体对桩身加速度有放大及滤波作用,而基岩对桩身加速度几乎不产生作用;断层上、下盘桩基础的桩顶水平位移随输入地震动强度的增大而增大,但达到振幅的时刻一致;上、下盘桩基础桩顶竖向位移时程响应都在50 s以后产生永久沉降;桩身最大弯矩截面处时程响应均在40 s以后产生永久弯矩;应重点考虑上部覆盖层软硬土体界面和基岩界面的抗弯承载力设计,及桩顶和基岩面附近的抗剪承载力设计;上盘桩基础按桩身加速度、弯矩、桩顶水平位移等动参数控制设计,下盘桩基础按动剪应力控制设计。  相似文献   

2.
为研究强震区跨断层桥梁桩基非线性动力相互作用特性,依托海文大桥实体工程,利用MIDAS/GTS有限元软件,建立了桩-土-断层相互作用模型,分析0.20~0.60g地震动强度下断层上下盘桩基加速度响应、桩顶水平位移、桩身弯矩以及桩身剪力响应情况。结果表明:覆盖层土体对桩身加速度放大作用明显,且随着输入地震动强度的增大,放大作用逐渐减弱;覆盖层对地震波的滤波作用显著,随着输入地震动强度的增大,滤波作用逐渐减弱;上盘桩基达到桩顶峰值加速度的时刻滞后于下盘;随着输入地震动强度的增大,上、下盘桩的桩顶产生的永久位移和水平位移峰值逐渐变大,上盘桩顶产生的永久位移和桩顶峰值位移均大于下盘,产生显著的"上盘效应";不同强度地震动作用下,断层上、下盘桩基弯矩均在上部土层界面处达到峰值,剪力均在基岩面处达到峰值,下盘桩基弯矩和剪力峰值大于上盘桩基,呈现出显著的"下盘效应"。在桥梁桩基抗震设计时,应着重考虑断层上、下盘桩基的差异和不同强度地震作用对桩基承载特性的影响。  相似文献   

3.
爆破地震作用下桩-土-结构相互作用的数值模拟   总被引:1,自引:0,他引:1  
土-结构动力相互作用是地震工程和结构抗震的重要研究内容,但目前对爆破地震作用下土-结构动力相互作用的研究较少。运用大型有限元软件ANSYS/LS-DYNA,建立了桩-土-结构相互作用体系的三维有限元模型,由桩尖输入实测爆破地震波,取得了良好的计算效果。计算结果表明:考虑桩-土-结构相互作用后,群桩基础中每个桩的位移、加速度和剪应力幅值均呈桩顶大、桩尖小的倒三角分布,桩与承台的接合部比较容易受到损坏;桩-土-结构相互作用体系在爆破地震波冲击后,还会发生几次振动,但是这些振动产生的影响要小于爆破地震产生的影响,这与实测结果相符合;爆破地震波冲击下,群桩基础中,角桩顶部表面的桩土接触压力较大,但在爆破地震波冲击后,中心桩顶部表面的桩土接触压力较大,且具有一定的周期性,直至衰减为零。  相似文献   

4.
The paper presents a numerical model for the dynamic analysis of pile groups with inclined piles in horizontally layered soil deposits. Piles are modelled with Euler–Bernoulli beams, while the soil is supposed to be constituted by independent infinite viscoelastic horizontal layers. The pile–soil–pile interaction as well as the hysteretic and geometric damping is taken into account by means of two‐dimensional elastodynamic Green's functions. Piles cap is considered by introducing a rigid constraint; the condensation of the problem permits a consistent derivation of both the dynamic impedance matrix of the soil–foundation system and the foundation input motion. These quantities are those used to perform inertial soil–structure interaction analyses in the framework of the substructure approach. Furthermore, the model allows evaluating the kinematic stress resultants in piles resulting from waves propagating in the soil deposit, taking into account the pile–soil–pile interactions. The model validation is carried out by performing accuracy analyses and comparing results in terms of dynamic impedance functions, kinematic response parameters and pile stress resultants, with those furnished by 3D refined finite element models. To this purpose, classical elastodynamic solutions are adopted to define the soil–pile interaction problem. The model results in low computational demands without significant loss of precision, compared with more rigorous approaches or refined finite element models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
基于u-p有限元公式模拟饱和砂土中水和土颗粒完全耦合效应,建立液化侧向流场地群桩动力反应分析的三维数值模型。模型中,砂土采用多屈服面弹塑性本构模型模拟、黏土采用多屈服面运动塑性模型模拟,群桩在计算过程中保持线弹性状态;采用20节点的六面体单元和考虑孔压效应的20-8节点分别划分黏土层和饱和砂层;选用剪切梁边界处理计算域的人工边界,模拟地震过程中土层的剪切效应;应用瑞利阻尼考虑体系的阻尼效应。随后对比分析2×2群桩中各单桩的地震反应规律,结果表明,各单桩的弯矩、位移时程规律基本一致,峰值弯矩及峰值位移出现时刻滞后于输入加速度峰值时刻,上坡向桩的弯矩和位移峰值大于下坡向的桩的反应值。接着通过改变桩间距研究群桩效应,随着桩间距增加,群桩中各单桩的弯矩最大值均出现在土层分界处,且各单桩的弯矩、桩顶位移逐渐增大。最后给出液化侧向流场地群桩效应的基本原因,得出该类场地群桩抗震设计的基本认识。  相似文献   

6.
The anti-slide support structure is widely used in the anti-seismic reinforcement of bridge foundations, but related experimental research was processing slowly. Based on the prototype of the Jiuzhaigou bridge at the Chengdu-Lanzhou Railway, a 3-D simulation model was established on the basis of the shaking table model test, and the rationality of the dynamic analysis model was verified by indicators such as the bending moment of the bridge piles, peak soil pressure, and PGA amplification factors. The results show that the inertia force of the bridge pier has an important influence on the deformation of the pile foundation. The bending moment and shearing force are larger in lateral bridge piles, and the maximum value is near the pile top. The PGA amplification factor is stronger in the back of the rear anti-slide piles and so is it in front of the bridge pier, and the soil is prone to slip and damage. The bedrock is rigid and the dynamic response is maintained at a low level. The anti-slide piles in the rear row play a major role in the anti-seismic reinforcement design, and the anti-slide piles in the front row can be used as an auxiliary support structure.  相似文献   

7.
为研究地震荷载作用下桩基-土-核电结构的抗震性能及土结动力反应规律,对拟开展的地震模拟振动试验模型进行数值计算分析。核电工程结构上部质量大和刚度大,试验模型不同于一般的工程结构,为检验振动台试验模型设计、传感器布设方案,对试验模型进行了数值模拟。数值模拟以单端承桩为研究对象,计算了上部结构质量和刚度变化时,在脉冲荷载及基于RG1.60谱人工合成地震动作用下桩身的地震反应规律。数值模拟表明:在水平地震动作用下,桩身剪力和弯矩包络线呈"X"状分布,桩底和顶处剪力弯矩较大;上部结构质量越大,桩身的剪力与弯矩越大;上部结构的刚度越大,桩身的剪力与弯矩越小;随着上部结构质量的增大和刚度的减小,反弯点逐渐向桩顶移动。桩顶发生最大位移时所对应的桩身挠度随着上部结构质量的增加而增大并且随着上部结构刚度的增大而减小。土层分界面处,桩身内力发生突变。此外,在脉冲荷载输入下,桩身反弯点位置与输入荷载的周期有关。计算结果为振动台试验模型设计提供了理论依据。  相似文献   

8.
Soil liquefaction induced by earthquakes frequently cause costly damage to pile foundations. However, various aspects of the dynamic behavior and failure mechanisms of piles in liquefiable soils still remain unclear. This paper presents a shake-table experiment conducted to investigate the dynamic behavior of a reinforced-concrete (RC) elevated cap pile foundation during (and prior to) soil liquefaction. Particular attention was paid to the failure mechanism of the piles during a strong shaking event. The experimental results indicate that decreasing the frequency and increasing the amplitude of earthquake excitation increased the pile bending moment as well as the speed of the excess pore pressure buildup in the free-field. The critical pile failure mode in the conducted testing configuration was found to be of the bending type, which was also confirmed by a representative nonlinear numerical model of the RC pile. The experimental results of this study can be used to calibrate numerical models and provide insights on seismic pile analysis and design.  相似文献   

9.
A simple analytical solution is presented to calculate the single-pile response when excited by the passage of Rayleigh seismic waves. Closed-form expressions for the horizontal and vertical displacement distributions are presented for piles with finite or infinite length. The analytical results for both free-head and fixed-head piles are obtained through a dynamic Winkler model, with realistic frequency-dependent ‘springs’ and ‘dashpots’. The results of the presented method are in excellent agreement with results of a rigorous solution. It is shown that in vertical motion, the differences between pile and soil displacements are far more significant than in horizontal motion, and therefore, further work is needed to investigate the importance of pile-soil-pile interaction (group effects), because of the vertical component of Rayleigh seismic waves.  相似文献   

10.
The propagation of stress waves in a large-diameter pipe pile for low strain dynamic testing cannot be explained properly by traditional 1D wave theories. A new computational model is established to obtain a wave equation that can describe the dynamic response of a large-diameter thin-walled pipe pile to a transient point load during a low strain integrity test. An analytical solution in the time domain is deduced using the separation of variables and variation of constant methods. The validity of this new solution is verifi ed by an existing analytical solution under free boundary conditions. The results of this time domain solution are also compared with the results of a frequency domain solution and fi eld test data. The comparisons indicate that the new solution agrees well with the results of previous solutions. Parametric studies using the new solution with reference to a case study are also carried out. The results show that the mode number affects the accuracy of the dynamic response. A mode number greater than 10 is required to enable the calculated dynamic responses to be independent of the mode number. The dynamic response is also greatly affected by soil properties. The larger the side resistance, the smaller the displacement response and the smaller the refl ected velocity wave crest. The displacement increases as the stress waves propagate along the pile when the pile shaft is free. The incident waves of displacement and velocity responses of the pile are not the same among different points in the circumferential direction on the pile top. However, the arrival time and peak value of the pile tip refl ected waves are almost the same among different points on the pile top.  相似文献   

11.
液化土中桩基础动力反应试验研究   总被引:3,自引:0,他引:3  
本文设计完成了包括三种密度饱和砂土和非液化干砂的多工况桩-土相互作用振动台动力试验,研究液化对土体和桩-承台动力反应的影响。通过试验和分析,得到了液化和非液化土层中土体水平加速度、侧向位移和桩-承台的水平加速度、侧向位移、桩身弯矩等指标的反应过程和模式,对比了液化和非液化条件对这些指标的影响方式,提出了各因素影响大小的分析结果。  相似文献   

12.
The kinematic bending of single piles in two-layer soil is explored to account for soil stiffness degradation and associated damping increase with increasing levels of shear strain, a fundamental aspect of soil behaviour which is not incorporated in current simplified seismic design methodologies for pile foundations.A parametric study of a vertical cylindrical pile embedded in a two-layer soil profile to vertically-propagating S waves, carried out in the time domain by a pertinent beam-on-dynamic-Winkler-foundation (BDWF) model, is reported. Strain effects are treated by means of the equivalent-linear procedure which provides soil stiffness and damping ratio as function of shear strain level. Whereas the approach still represents a crude representation of the actual soil behaviour to dynamic loading, it is more realistic than elementary solutions based on linear visco-elasticity adopted in earlier studies.The paper highlights that soil nonlinearity may have either a detrimental or a beneficial effect on kinematic pile bending depending on the circumstances. The predictive equations for kinematic pile bending in visco-elastic soil recently developed by the Authors are extended to encompass strain effects. Numerical examples and comparisons against experimental data from case histories and shaking table tests are presented.  相似文献   

13.
When analysing the seismic response of pile groups, a vertically‐incident wavefield is usually employed even though it does not necessarily correspond to the worst case scenario. This work aims to study the influences of both the type of seismic body wave and its angle of incidence on the dynamic response of pile foundations. To this end, the formulation of SV, SH and P obliquely‐incident waves is presented and implemented in a frequency‐domain boundary element‐finite element code for the dynamic analysis of pile foundations and piled structures. Results are presented in terms of bending moments at cap level of single piles and 3 × 3 pile groups, both in frequency and in time domains. It is found that, in general, the vertical incidence is not the most unfavourable situation. In particular, obliquely‐incident SV waves with angles of incidence smaller than the critical one, a situation in which the mechanism of propagation of the waves in the soil changes and surface waves appear, yield bending moments much larger than those obtained for vertically‐incident wavefields. It is also shown that the influence of pile‐to‐pile interaction on the kinematic bending moments becomes significant for non‐vertical incidence, especially for P and SV waves. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Seismic behavior of inclined piles has been considered detrimental for years. However, recent researches show that battered piles can have a beneficial effect. In this framework, a series of centrifuge tests on an inclined pile group is performed. The analysis is based on the comparative response of two 2×1 simplified pile groups: one with vertical piles and the other with one vertical and one inclined pile. The response of these pile groups to repeated earthquakes or sinusoidal inputs is analyzed through the response frequencies, the envelop curves of bending moment profiles, the axial loads measured in both piles and the kinematic response of the cap. Results highlight that the effect of inclined pile is highly influenced by the frequency content of the input. In addition, the inclined pile induces non-negligible residual bending moments, higher horizontal stiffness at the pile cap and larger rotation.  相似文献   

15.
对分层弹性地基中的单桩基础通过特性分析建立了合理的力学模型,按分层弹性地基土模型对柱进行了扭转振动分析,给出了桩基础扭转自振特征及在扭转地震载荷与扭转振动载荷作用下的强迫反应解析解,文中的解析公式为分层弹性地基中的桩基础扭转动力反应分析提供了一种新的解析方法。  相似文献   

16.
The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated. Governing equations of the pile-soil system are established based on elastodynamics. Three-dimensional wave equations of soil are decoupled through differential transformation and variable separation. Consequently, expressions of soil displacements and horizontal resistances can be obtained. An analytical solution of the pile is derived based on continuity conditions between the pile and soil, subsequently from which expressions of the complex impedances are deduced. Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile. Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.  相似文献   

17.
The objectives of this paper are to show practically: (1) the validation of a proposed three-dimensional effective stress analysis for the pile foundations, and (2) the effectiveness of remedial deposits on pile stresses under liquefaction by making comparisons between the results of centrifuge tests and those of the proposed analysis. Two foundation models supported by end-bending piles were studied with improved and unimproved deposits. There exists a good consistency between the numerical and experimental results for excess pore water-pressure ratios ranging from 0 to about 0·9. From the numerical results, the bending moment at the pile top with the improved deposit is about 50 per cent lower than that with the unimproved deposit. However, it was found that the smaller the bending moment develops in the pile with the improved deposit, the larger the compressive and/or tensional axial stresses in the pile. This is due to the predominant excitation of rocking vibration of the foundation. From the analytical and experimental results, it has been found that the remedial method can be a variable means to protect piles from soil liquefaction hazards. However, both axial stress and bending moment produced in piles should be considered in assessing the liquefied seismic capacity of group pile-foundation–structural systems with improved soil deposits. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
可液化倾斜场地中桩基动力响应振动台试验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究倾斜场地中桩基的动力响应,以2011年新西兰地震中受损的Dallington桥为原型,设计并完成可液化倾斜场地桥梁桩-土相互作用的振动台模型试验。试验再现了喷砂、冒水、地裂缝、场地流滑等宏观现象。试验结果表明,土层足够的液化势及惯性是造成倾斜场地侧向流滑的必要条件;浅层土相比深层土更易液化,液化层中的加速度由下至上呈现逐渐衰减的趋势,而未液化砂土层却表现为逐渐增大的特征;深部测点的桩侧土压力明显大于浅部测点,且土体的液化会弱化土对结构的压力;结构应变最大值位于上部桥台,而结构弯矩在桩身中部及土层分界面附近出现两个较大值,桩端嵌固及倾斜场地流滑是造成出现两个弯矩较大值的主要原因。  相似文献   

19.
A simple analytical solution is presented to calculate the pile-soil-pile interaction and eventually the dynamic response of pile groups when excited by the passage of Rayleigh waves and obliquely incident SH-waves. A dynamic Winkler model, with realistic frequency-dependent ‘springs’ and ‘dashpots’ in conjunction with physically motivated approximations is utilized to compute the wave field radiating from an oscillating pile and the effect of this field on an adjacent pile. The coupled rocking motion of the pile group resulting from Rayleigh waves and the torsional motion of the pile group resulting from SH-waves is accurately predicted by a simple mathematical expression. The results of the presented method can be obtained with ‘hand calculations’ and are in excellent agreement with results from ‘rigorous’ solutions based on integral equation formulations. It is found that the group response is primarily affected from the phase difference of the input seismic motion at the location of each pile (wave-passage effect). Pile-soil-pile interaction has insignificant effect and can be neglected.  相似文献   

20.
In this study, A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P, SV and Rayleigh waves are established, based on the viscoelastic artificial boundary elements and the boundary substructure method for seismic wave input. After verifying the calculation accuracy, a comparative study on seismic response of a shallow-buried, double-deck, double-span subway station structure under incident P, SV and Rayleigh waves is conducted. The research results show that there are certain differences in the cross-sectional internal force distribution characteristics of underground structures under different types of seismic waves. The research results show that there are certain differences in the internal force distribution characteristics of underground structures under different types of seismic waves. At the bottom of the side wall, the top and bottom of the center pillar of the underground structure, the section bending moments of the underground structure under the incidences of SV wave and Rayleigh wave are relatively close, and are significantly larger than the calculation result under the incidence of P wave. At the center of the side wall and the top floor of the structure, the peak value of the cross-sectional internal force under the incident Rayleigh wave is larger than the calculation result under SV wave. In addition, the floor of the underground structure under Rayleigh waves vibrates in both the horizontal and vertical directions, and the magnification effect in the vertical direction is more significant. Considering that the current seismic research of underground structures mainly considers the effect of body waves such as the shear waves, sufficient attention should be paid to the incidence of Rayleigh waves in the future seismic design of shallow underground structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号