首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and implementation of a hybrid discrete fracture network/equivalent porous medium (DFN/EPM) approach to groundwater flow at the Gyeong-Ju low- and intermediate-level radioactive waste (LILW) disposal site in the Republic of Korea is reported. The geometrical and hydrogeological properties of fractured zones, background fractures and rock matrix were derived from site characterization data and implemented as a DFN. Several DFN realizations, including the deterministic fractured zones and the stochastic background fractures, whose statistical properties were verified by comparison with in-situ fracture and hydraulic test data, were suggested, and they were then upscaled to continuums using a fracture tensor approach for site-scale flow simulations. The upscaled models were evaluated by comparison to in-situ pressure monitoring data, and then used to simulate post-closure hydrogeology for the LILW facility. Simulation results demonstrate the importance of careful characterization and implementation of fractured zones. The study highlighted the importance of reducing uncertainty regarding the properties and variability of natural background fractures, particularly in the immediate vicinity of repository emplacement.  相似文献   

2.
Groundwater flow in fractured rocks is modeled using a coupled model based on the domain decomposition method. In the model, the fractured porous medium is divided into two non-overlapping sub-domains. One is the rock matrix, in which the medium is described using a continuum model. The other consists of deep fractures and fissure zones, where the medium is described using a discrete fracture network (DFN) model. The two models are coupled through the continuity of the hydraulic heads and fluxes on the common boundaries. The coupled model is used to simulate groundwater flow in a hydropower station. The results show that the model simulates groundwater levels that are in agreement with the measured groundwater levels. Furthermore, the model’s parameters relating to deep fractures and fissure zones are verified by comparing three different models (the continuum model, coupled model, and DFN model). The results show that the coupled model can capture and duplicate the hydrogeological conditions in the study domain, whereas the continuum model overestimates and the DFN model underestimates the measured hydraulic heads. A sensitivity analysis shows that fracture aperture has a considerable effect on the groundwater level. So, when the fracture aperture is large, the coupled model or DFN model is more appropriate than the continuum model in the fracture domain.  相似文献   

3.
We propose a multi-fidelity system reduction technique that uses weighted graphs paired with three-dimensional discrete fracture network (DFN) modelling for efficient simulation of subsurface flow and transport in fractured media. DFN models are used to simulate flow and transport in subsurface fractured rock with low-permeability. One method to alleviate the heavy computational overhead associated with these simulations is to reduce the size of the DFN using a graph representation of it to identify the primary flow sub-network and only simulate flow and transport thereon. The first of these methods used unweighted graphs constructed solely on DFN topology and could be used for accurate predictions of first-passage times. However, these techniques perform poorly when predicting later stages of the mass breakthrough. We utilize a weighted-graph representation of the DFN where edge weights are based on hydrological parameters in the DFN that allows us to exploit the kinematic quantities derivable a posteriori from the flow solution obtained on the graph representation of the DFN to perform system reduction and predict the later stages of the breakthrough curve with high fidelity. We also propose and demonstrate the use of an adaptive pruning algorithm with error control that produces a pruned DFN sub-network whose predicted mass breakthrough agrees with the original DFN within a user-specified tolerance. The method allows for the level of accuracy to be a user-controlled parameter.  相似文献   

4.
5.
Structural and topological information play a key role in modeling flow and transport through fractured rock in the subsurface. Discrete fracture network (DFN) computational suites such as dfnWorks (Hyman et al. Comput. Geosci. 84, 10–19 2015) are designed to simulate flow and transport in such porous media. Flow and transport calculations reveal that a small backbone of fractures exists, where most flow and transport occurs. Restricting the flowing fracture network to this backbone provides a significant reduction in the network’s effective size. However, the particle-tracking simulations needed to determine this reduction are computationally intensive. Such methods may be impractical for large systems or for robust uncertainty quantification of fracture networks, where thousands of forward simulations are needed to bound system behavior. In this paper, we develop an alternative network reduction approach to characterizing transport in DFNs, by combining graph theoretical and machine learning methods. We consider a graph representation where nodes signify fractures and edges denote their intersections. Using random forest and support vector machines, we rapidly identify a subnetwork that captures the flow patterns of the full DFN, based primarily on node centrality features in the graph. Our supervised learning techniques train on particle-tracking backbone paths found by dfnWorks, but run in negligible time compared to those simulations. We find that our predictions can reduce the network to approximately 20% of its original size, while still generating breakthrough curves consistent with those of the original network.  相似文献   

6.
节理岩体几何结构非常复杂,研究其渗流特性对于指导含水岩层稳定性分析具有重要价值。应用离散裂隙网络模型DFN方法,基于VC++6.0软件平台,建立了平面渗流分析方法,分析了节理岩体不同几何分布情况下的渗透率张量特征,通过定义渗流定向性系数对岩体渗流的定向性特征进行了定量分析。结果表明:单组节理岩体渗流具有明显的各向异性特征,渗流定向性随着节理角度变化显著;节理随着节理贯通性增加,节理渗透率呈现对数增加趋势;两组节理情况下,各向异性特征随着节理组间夹角变化;两组节理岩体渗流特征研究中,正交分布下,岩体仍存在各向异性,但渗流定向性系数较低;当节理倾角服从正态分布时,随着节理倾角标准差增大,渗透率增加;两组节理夹角不同时,节理渗透主方向倾角随着夹角增大而相应增大,基本沿两组节理夹角方向的角平分线方向。  相似文献   

7.
基于离散裂隙网络模型的裂隙水渗流计算   总被引:1,自引:1,他引:0  
离散裂隙网络模型(Discrete Fracture Network(DFN))是研究裂隙水渗流最为有效的手段之一。文章根据裂隙几何参数和水力参数的统计分布,利用Monte Carlo随机模拟技术生成二维裂隙网络,基于图论无向图的邻接矩阵判断裂隙网络的连通,利用递归算法提取出裂隙网络的主干网或优势流路径。基于立方定律和渗流连续性方程,利用数值解析法建立了二维裂隙网络渗流模型,分析不同边界条件下裂隙网络中的流体流动。结果表明,该方法可以模拟区域宏观水力梯度和边界条件下,裂隙网络水力梯度方向总的流量,以及节点的水位、节点间的流量和流动方向的变化特征,为区域岩溶裂隙水渗流计算提供了一种实用、可行的方法。   相似文献   

8.

Results of a series of deformation experiments conducted on gabbro samples and numerical models for computation of flow are presented. Rocks were subjected to triaxial tests (σ1 > σ2 = σ3) under σ3 = 150 MPa confining pressure at room temperature, to generate fracture network patterns. These patterns were either produced by keeping a constant confining pressure and loading the sample up to failure (conventional test: CT), or by building up a high differential stress and suddenly releasing the confining pressure (confining pressure release test: CPR). The networks are similar in overall density but differ primarily in the orientation of smaller fractures. In the case of CT tests, a conjugate fracture set is observed with one dominant fracture zone running at about 20° from σ1. CPR tests do not show such a conjugate pattern and the mean fracture orientation is at around 35° from σ1. Discrete fracture network (DFN) methodology was used to determine the distribution of flow and hydraulic head for both fracture sets under simple boundary conditions and uniform transmissivity values. The fracture network generated by CT and CPR tests exhibit different patterns of flow field and hydraulic head configurations, but convey approximately the same amount of flow at all scales for which DFN models were simulated. The numerical modelling results help to develop understanding of qualitative differences in flow distribution that may arise in rocks of the same mineralogical composition and mechanical properties, but under the influence of different stress conditions, albeit at similar overall stress magnitude.

  相似文献   

9.
郭亮  李晓昭  周扬一  李煜  纪成亮 《岩土力学》2016,37(9):2636-2644
离散裂隙随机网络模型中结构面的分布特征仅代表其统计规律,并非地质成因、结构模式、构造形迹的客观反映,以致后续力学计算及渗流模拟结果可信度偏低。针对国家高放废物处置库甘肃北山预选区出露良好的花岗岩体,基于实测结构面统计规律、内在成生关系及水力联系,在前期纯随机模型关键部位修正特征参数,并融入人工辨识的确定结构模式而构建“随机-确定”耦合模型。图形和渗流模拟两种定量检验结果表明:耦合模型结构面数量更接近客观实际,模型准确度提升约48.8%;耦合模型渗流路径与流量较之前更显客观真实,模拟结果与试验数据的接近程度比随机模型大约1/3。另外,不同孔位渗流结果显示:相比于随机结构面,确定性结构面对区域渗流控制作用更加明显,在渗流模拟中扮演更为重要角色。此耦合模型有益于拓宽结构面网络模拟的发展方向。  相似文献   

10.
11.
Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.  相似文献   

12.
Folding at upper crustal levels occurs by bending of beds and flexural slip between beds. As a fold's interlimb angle decreases, changes in bed thickness and limb rotation are accommodated by various mechanisms, depending on deformation conditions. In the elastico-frictional (EF) regime, cataclastic flow may be the dominant mechanism for fold tightening. The Canyon Range (CR) syncline, located in the Sevier belt of central Utah, shows this type of deformation. The fold involves three thick quartzite units, with slight lithological variations between them. Fold tightening took place in the EF regime (<2 km overburden) by cataclastic flow, involving collective movement on a distributed network of fractures and deformation zones (DZs) from the micro- to the outcrop-scale. In detail, the degree of cataclastic deformation varies significantly across the fold due to minor variations in initial bedding thickness, grain size, matrix composition, etc. A cooperative relationship exists across different scales, and the fracture networks result in a fracture shape fabric that is relatively homogeneous at the outcrop-scale.The initial outcrop scale fracture/DZ network geometry is a product of the growth and linking of micro-scale cataclasite zones, which in turn is controlled by primary lithological variations. Once a fracture network forms, the material behavior of the fractured rock is unlike that of the original rock, with sliding of fracture-bound blocks accomplishing ‘block-controlled’ cataclastic flow. Thus, initial lithological variations at the micro-scale largely control the final deformation behavior at the largest scale. During progressive fold tightening, additional factors regulate cataclastic flow, such as fracture/DZ reactivation or healing, during folding. Although initial lithological variations in different units may produce unique network geometries, each unit's behavior may also depend upon the behavior of adjacent units. In the CR syncline, during the initial stages of cataclastic flow, the inherent nature of each quartzite unit results in unit-specific fracture network geometries. As deformation progresses, unit-specific networks begin to interact with those in surrounding units, resulting in feedback mechanisms regulating the later stages of network development. Thus, the nature of cataclastic flow changes dramatically from the initial to the final stages of folding.  相似文献   

13.
This paper presents the results of a series of numerical experiments using the synthetic rock mass (SRM) approach to quantify the behaviour of jointed rock masses. Field data from a massive sulphide rock mass, at the Brunswick mine, were used to develop a discrete fracture network (DFN). The constructed DFN model was subsequently subjected to random sampling whereby 40 cubic samples, of height to width ratio of two, and of varying widths (0.05 to 10 m) were isolated. The discrete fracture samples were linked to 3D bonded particle models to generate representative SRM models for each sample size. This approach simulated the jointed rock mass as an assembly of fractures embedded into the rock matrix. The SRM samples were submitted to uniaxial loading, and the complete stress–strain behaviour of each specimen was recorded. This approach provided a way to determine the complex constitutive behaviour of large‐scale rock mass samples. This is often difficult or not possible to achieve in the laboratory. The numerical experiments suggested that higher post‐peak modulus values were obtained for smaller samples and lower values for larger sample sizes. Furthermore, the observed deviation of the recorded post‐peak modulus values decreased with sample size. The ratio of residual strength of rock mass samples per uniaxial compressive strength intact increases moderately with sample size. Consequently, for the investigated massive sulphide rock mass, the pre‐peak and post‐peak representative elemental volume size was found to be the same (7 × 7 × 14 m). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We present a discussion of the state-of-the-art on the use of discrete fracture networks (DFNs) for modelling geometrical characteristics, geomechanical evolution and hydromechanical (HM) behaviour of natural fracture networks in rock. The DFN models considered include those based on geological mapping, stochastic generation and geomechanical simulation. Different types of continuum, discontinuum and hybrid geomechanical models that integrate DFN information are summarised. Numerical studies aiming at investigating geomechanical effects on fluid flow in DFNs are reviewed. The paper finally provides recommendations for advancing the modelling of coupled HM processes in fractured rocks through more physically-based DFN generation and geomechanical simulation.  相似文献   

15.
Estimating the hydraulic properties of fractured aquifers is challenging due to the complexity of structural discontinuities that can generally be measured at a small scale, either in core or in outcrop, but influence groundwater flow over a range of scales. This modeling study uses fracture scanline data obtained from surface bedrock exposures to derive estimates of permeability that can be used to represent the fractured rock matrix within regional scale flow models. The model is developed using PETREL, which traditionally benefits from high resolution data sets obtained during oil and gas exploration, including for example seismic data, and borehole logging data (both lithological and geophysical). The technique consists of interpreting scanline fracture data, and using these data to generate representative Discrete Fracture Network (DFN) models for each field set. The DFN models are then upscaled to provide an effective hydraulic conductivity tensor that represents the fractured rock matrix. For each field site, the upscaled hydraulic conductivities are compared with estimates derived from pumping tests to validate the model. A hydraulic conductivity field is generated for the study region that captures the spatial variability of fracture networks in pseudo-three dimensions from scanline data. Hydraulic conductivities estimated using this approach compare well with those estimated from pumping test data. The study results suggest that such an approach may be feasible for taking small scale fracture data and upscaling these to represent the aquifer matrix hydraulic properties needed for regional groundwater modeling.  相似文献   

16.
Using field data from Agnico-Eagle’s Meliadine gold project located in Nunavut Territory in northern Canada, a coupled DFN–DEM approach was used to evaluate the rock mass mechanical properties at REV. Variability in the structural data gathered on site and the variability associated with the stochastic modeling process have an impact on discrete fracture model (DFN) properties. Through a sensitivity analysis, this paper assesses the influence of a variation in the DFN model input parameters’ values on the rock mass peak properties – uniaxial compressive strength, Young modulus and Poisson ratio. The results not only highlight the possibilities associated with DFN–DEM modeling in characterizing rock mass properties at the engineering scale, they also provide a systematic way to assess the critical structural parameters controlling the rock mass properties.  相似文献   

17.
Field injectivity tests are widely used in the oil and gas industry to obtain key formation characteristics. The prevailing approaches for injectivity test interpretation rely on traditional analytical models. A number of parameters may affect the test results and lead to interpretation difficulties. Understanding their impacts on pressure response and fracture geometry of the test is essential for accurate test interpretation. In this work, a coupled flow and geomechanics model is developed for numerical simulation of field injectivity tests. The coupled model combines a cohesive zone model for simulating fluid-driven fracture and a poro-elastic/plastic model for simulating formation behavior. The model can capture fracture propagation, fluid flow within the fracture and formation, deformation of the formation, and evolution of pore pressure and stress around the wellbore and fracture during the tests. Numerical simulations are carried out to investigate the impacts of a multitude of parameters on test behaviors. The parameters include rock permeability, the leak-off coefficient of the fracture, rock stiffness, rock toughness, rock strength, plasticity deformation, and injection rate. The sensitivity of pressure response and fracture geometry on each parameter is reported and discussed. The coupled flow and geomechanics model provides additional advantages in the understanding of the fundamental mechanisms of field injectivity tests.  相似文献   

18.
A new procedure is developed to correlate structural lineaments recognised through air-photo interpretation with subsurface fracture features that are associated with zones of high groundwater production in fractured-rock environments. The analysis approach is referred to as the homogeneous tectonic domain (HTD) method and involves correlating the lineament features of a given area with the orientation of the primary stress fields and fracture structures associated with the recent tectonic history that affected the region of study. The main premise of the method is that the most recent tectonic events in a given area have had the most significant influence on the nature of the existing fracture network and subsequently on the regional groundwater flow characteristics. A study site was selected within the state of S?o Paulo, Brazil, where a complex tectonic history dating back to Precambrian time has generated significant fracture porosity in the bedrock environment. The bedrock is heavily used in this area as a domestic and industrial aquifer. The most recent tectonic activity is associated with five distinct Cenozoic events that generated fracture features through both shear and extension stress fields. Due to the mode of formation, fracture zones generated by extension tend to have the largest effective apertures and are the most conductive to groundwater. By applying the HTD method in a series of test areas where specific Cenozoic events were dominant, fracture trends generated by shear and extension mechanisms could be identified. Water-well production capacity was correlated with proximity to extension-type structures in most cases. Other factors, such as the type of rock the well was completed in, had a much weaker influence on well capacity. Through this application, the HTD approach is shown to provide a methodology for delineating fractured areas within rock environments that have high potential for groundwater-resource development by combining classical lineament analysis with a clear understanding of the tectonic history of a given area. Electronic Publication  相似文献   

19.
Large-scale geological features have been identified by satellite imagery and global positioning system data in the Wajid Sandstone in Saudi Arabia. The main objective is to evaluate the importance of fractures for the overall flow behaviour in this fractured rock aquifer and to estimate in-situ hydraulic apertures. Data on fractures and lineaments were available for three outcrops. By applying a “cut-out” routine on the fracture endpoint data of these fracture trace windows, three deterministic discrete fracture networks (DFN), with an area of 100 m?×?100 m, could be generated. These were used to simulate the fracture flow and to determine the hydraulic conductivity tensors. Using additional data on hydraulic pumping tests and matrix conductivities, in-situ hydraulic apertures could be determined. Average in-situ hydraulic apertures range from 1,300 to 1,700 µm. Observations from the field support these results. In addition, a hydraulic conductivity ratio between the matrix and fracture system was used to identify the contribution of the DFN to the overall fluid transport. A ratio of 10.4 was determined, which indicates that the effective flow behaviour in the Wajid Sandstone aquifer is not entirely dominated by the fracture system, though evidently strongly controlled by it.  相似文献   

20.
Mathematical Geosciences - We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that takes advantage of the intrinsic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号