首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The broadband electrostatic turbulence generally observed in the high-latitude ionosphere is a superposition of nonlocal waves of ion-acoustic and ion-cyclotron types. In the presence of a shear of ion parallel velocity, ion-acoustic modes can be induced by an instability emerging due to an inhomogeneous distribution of energy density. This paper is devoted to the studies of excitation of oblique ion-acoustic wave in background configurations with inhomogeneous profiles of both electric field and ion parallel velocity. A numerical algorithm has been developed, and instability was simulated at various parameters of background plasma. The general possibility of oblique ion-acoustic wave generation by a gradient of ion parallel velocity is shown. In this case, the wave spectrum is found to be broadband, which agrees with satellite observations.  相似文献   

2.
The data of ionospheric perturbations observed on DEMETER before the 2007 Pu'er earthquake are analyzed. The three-component plasma (ions, electrons and heavy ions) is studied in the fluid concept. The linear dispersion relation for ion-acoustic wave is found in the presence of heavy ions. The nonlinear dynamics is studied for arbitrary amplitude of the wave. The Sagdeev potential is calculated, which shows that solitary structure exists for Mach number within a range defined by the presence of heavy ions. The developed ion-acoustic solitons may be used as precursor for earthquake prediction.  相似文献   

3.
This paper presents more data on the properties of type-1 irregularities in the nighttime midlatitude E-region ionosphere. The measurements were made with a 50-MHz Doppler radar system operating in Crete, Greece. The type-1 echoes last from several seconds to a few minutes and are characterized by narrow Doppler spectra with peaks corresponding to wave phase velocities of 250–350 m/s. The average velocity of 285 m/s is about 20% lower than nominal E-region ion-acoustic speeds, probably because of the presence of heavy metallic ions in the sporadic-E-layers that appear to be associated with the mid-latitude plasma instabilities. Sometimes the type-1 echoes are combined with a broad spectrum of type-2 echoes; at other times they dominate the spectrum or may appear in the absence of any type-2 spectral component. We believe these echoes are due to the modified two-stream plasma instability driven by a polarization electric field that must be larger than 10 mV/m. This field is similar in nature to the equatorial electrojet polarization field and can arise when patchy nighttime sporadic-E-layers have the right geometry.  相似文献   

4.
Summary Propagating acoustic-like disturbances generated by nuclear explosions have been observed to split in the lower ionosphere. The resulting two disturbances propagate vertically into the upper ionosphere at different speeds, the slower at ordinary sound speed in a neutral medium and the faster at almost twice the speed of sound.The faster disturbance travels at the speed of an ion-acoustic wave in the ionic fluid. Such identification is prohibited theoretically by the large damping, or coupling, of the ionic mode to the neutral particle medium through ion-neutral elastic collisions; however, if inelastic collisions are included in the theory, the principal exothermic charge-exchange and charge-transfer reactions in the ionosphere provide enough additional coherent momentum in the charged particles to offset the losses through elastic collisions. It is shown quantitatively that in some regions of the ionosphere ionacoustic wave propagation can occur almost losslessly.It is possible that under some conditions the ionosphere approaches an unstable chemical equilibrium that is relieved by the spontaneous generation of ion-acoustic wavelets. Various ionospheric observations are examined in which there is some evidence of the effects of ionospheric ionacoustic disturbances.  相似文献   

5.
Incoherent scatter radars are designed to detect scatter from thermalfluctuations in the ionosphere. These fluctuations contain, among other things,features associated with ion-acoustic waves driven by random motions within theplasma. The resulting spectra are generally broad and noisy, but neverthelessthe technique can, through a detailed analysis of spectra, be used to measure arange of physical parameters in the Earth's upper atmosphere, and provides apowerful diagnostic in studies of magnetosphere-ionosphere coupling,thermosphere dynamics and the geospace environment in general. In recent yearsthere has been much interest in naturally occurring (as opposed to artificiallystimulated) enhanced ion-acoustic spectra seen in the auroral zone andcusp/cleft region. A study of the plasma instability processes that lead tosuch spectra will help us to better understand auroral particle acceleration,wave-particle and wave-wave interactions in the ionosphere, and theirassociation with magnetospheric processes. There is now a substantial body ofliterature documenting observations of enhanced ion-acoustic spectra, but thereremains controversy over generation mechanisms. We present a review ofliterature documenting observations of naturally enhanced ion-acoustic spectra,observed mainly along the geomagnetic field direction, along with a discussionof the theories put forward to explain such phenomena.  相似文献   

6.
The generation of auroral kilometric radiation in a narrow 3D plasma cavity, in which a weakly relativistic electron flow is propagated along the magnetic field against a low-density cold background plasma, is studied. The time dynamics of the propagation and intensification of waves are analyzed using geometric optics equations. The waves have different wave vector components and start from the cavity center at an altitude of about the Earth’s radius at plasma parameters typical for the auroral zone at this altitude. It is shown that the global inhomogeneity of the Earth’s magnetic field is of key importance in shaping the auroral kilometric radiation spectra.  相似文献   

7.
FAST observations have indicated signatures of large amplitude solitary waves in the auroral zone of the earth's ionosphere. Our objective here is to propose a model for the generation of density cavities by the ponderomotive force of electron-acoustic waves. For this purpose, we derive a nonlinear Schrödinger equation for the electron-acoustic wave envelope as well as a driven (by the electron-acoustic wave ponderomotive force) ion-acoustic wave equation. Possible stationary solutions of our coupled equations are obtained.  相似文献   

8.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

9.
本文利用Cluster卫星2004年11月8日的观测数据,分析了磁尾等离子体片中与地向周期性高速离子流相伴随的ULF波.结果显示周期性高速流的速度波动与磁场和温度中的ULF波同时出现、同时增强、同时消失,而且波动的频率都集中在60~70 mHz.这说明磁场和温度ULF波与周期性高速流密切相关,周期性高速流是ULF波产生的来源.高速流波动的相位与磁场波动的相位大致反相关,与热离子温度波动的相位正相关,同时磁场波动与热离子温度波动呈相位反相关的特性.最小方差法分析的结果显示虽然波传播方向有地向分量,但其主要传播方向是向等离子体片中心传播,并与周期性高速流速度方向垂直.以上观测说明是高速流的周期性变化产生了磁场在Pi1频率范围内的ULF波.  相似文献   

10.
The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.  相似文献   

11.
The relativistic motion of electrons in the field of a finite amplitude circularly polarized whistler propagating along a constant magnetic field in a plasma with longitudinal inhomogeneity is considered. It is shown that the equations of the particle motion exhibit a constant of the motion despite the spatial dependence of the wave parameters. The existence of the constant allows one to reduce the equations of motion to a canonical form describing one-dimensional oscillations of a particle with the Hamiltonian slowly varying in the process of the oscillations.  相似文献   

12.
In this study, the effect of the electron sound speed on the extraordinary wave propagation is calculated without an approximation for either collisional or collisionless cases in the ionospheric plasma by using the real geometry of the Earth’s magnetic field for the Northern Hemisphere. It is observed that there is no remarkable effect on the propagation of the extraordinary wave, especially at reflection altitudes. But it is also observed that the magnitudes of k 2 (the square of the wave number) have changed every season, and the phase velocity of wave in warm ionospheric plasma has increased.  相似文献   

13.
We suggest that the non-Maxwellian plasma produced during the catastrophic collapse of a rock (following, e.g., the impulsive momentum transfer in a collision between a hypervelocity projectile and a target rock, or the sudden failure of a rock specimen under stress) may satisfy the conditions for the onset of an ion-acoustic instability. If these fairly loose conditions are satisfied, the plasma may be the source of the electromagnetic RF radiation which has been detected in several laboratory experiments. The relevance of these results to the RF emissions which are know to accompany some earthquakes is discussed.  相似文献   

14.
本文使用热等离子体模型,研究了电磁波和电声波在具有非均匀电子密度剖面和非均匀速度剖面等离子体层中,斜入射波的非相对论性的传播过程,求得了传播方程边值问题的数值解。同时讨论了由于引入等离子体运动速度V0以后对截止频率和可传播角度的影响。  相似文献   

15.
主动空间试验中空间电荷波向电磁波的转换   总被引:2,自引:0,他引:2       下载免费PDF全文
本文理论分析了电子束沿地磁场穿越均匀、磁化等离子体密度跃变区域时,在弱磁场近似、哨声波激发、低频近似等几种典型情况下电子束流空间电荷波(Space charge wave)向电磁波的转换.先运用小信号假设求得电子束入射进均匀各向异性冷等离子体之后的色散关系和空间电荷波波数,然后借助于电磁波分量和电子束速度的边界条件,求解电子束在等离子浓度发生变化区域激发的波振幅,在几种典型情形下推导出空间电荷波转换为电磁波之间转换系数的近似解,给出了相应波辐射的坡印亭(Poynting)矢量表达式.结果表明,在渡越辐射(Transition radiation)情形下电子束可以在空间等离子体中激发出阿尔芬波(Alfven wave)和哨声波(Whistler wave).所得结论可用于对主动空间试验结果的分析.  相似文献   

16.
依据太阳耀斑爆发特征,建立了双耀斑电子束与日冕背景相作用的模型,数值结果表明,该等离子体系统将激发静电不稳定性,其时间增长率ωi受耀斑热束密度与日冕背景密度比值(nh/no)以及耀斑冷束相对论电子密度与日冕密度值(nc/no)影响较大,并随它们增大而增大,其实频大小在耀斑热束等离子体频率附近。因此,此系统可激发大于1GHz的高频静电辐射,这些结果对揭示耀斑粒子在日冕空间传播行为有一定作用,并可用于探讨高频Ⅲ型射电机制。  相似文献   

17.
本文讨论了等离子体湍流对电子加速的两种模型:(1)假定在空间中存在一个空间均匀的等离子体湍流区,当具有一定初始分布的电子束通过此湍流区时,研究湍流场对电子束的加速过程;(2)在某一封闭的区域中,存在着具有一定初始分布和空间均匀的等离子体,当某种类型的等离子体波突然传入此等离子体区,然后考察此区中电子的加速过程。在这两种模型中,可能存在着某种电子消失机制。假定湍谱是幂指数形式,我们给出了不同类型湍流扩散系数的普遍形式。利用较简单的数学方法,求解了包括消失过程的一维准线性动力学方程,对于给定的初始分布,得出了分布函数的解析解,并给出了平均能量时间关系的表达式。另外,对于特定的湍谱指数,解出了当平行电场和湍流同时存在时的分布函数。最后,对所得结果进行了数值分析和讨论。  相似文献   

18.
任意各向异性介质相(群)速度的计算   总被引:2,自引:1,他引:1       下载免费PDF全文
李芳  曹思远  姚健 《地球物理学报》2012,55(10):3420-3426
反映弹性波在各向异性介质中传播特性的两个基础的物理量是相速度和群速度.本文在总结前人工作的基础上,提出任意各向异性介质相(群)速度的计算方案:首先推导各自计算公式,其次考虑剪切波奇点的特殊性,再次令其遵循相应约束条件,最后,采用三个计算实例检验该方案的正确性和有效性.通过对计算结果的分析以及各向异性理论预测可以加深对各向异性特有性质(如剪切波奇点、群速度多值性)的理解,有助于增强我们对任意各向异性理论的基本认识.  相似文献   

19.
本文应用Chisnell- no方法,求解了在理想介貭中,垂直磁流体冲激波在非均勻磁場中的传播問題。这种方法,把非均勻介貭分解成无限小的弱間断面,根据气体动力学中波与間断面相互作用的原理,算出激波通过弱間断面时的强度变化,然后用积分求得激波通过整个非均勻区时的强度变化。作者引入了激波的特征速度(它是激波在波前后介貭中传播速度的几何平均值)作为輔助参量,得到形式上比較簡单的激波传播方程。然后考虑了磁压力远大于气体压力的强磁介貭中的激波传播問題,并进行了数值积分。采用的介貭密度模型有三种:(1)阿尔芬波速为常数;(2)密度不变;(3)密度与磁場强度成正比。計算結果表明:当激波由弱磁場向强磁場传播时,激波的强度逐漸变弱。其中,在阿尔芬波速为常数的介貭中,激波强度的衰减最为緩慢;在密度不变的介貭中,激波强度的衰減最为迅速;而在密度与磁場成正比的介貭中,激波强度的衰減則介乎上述两种密度分布之間。作者联系磁流体冲激波在地球外层空間的传播問題进行了討論,密度的模型采取大气啃昔的观測結果(卽上述第三种密度分布),并进行了适当的外推,估計了在十个地球半径处的磁流体冲激波传到地面时的强度,求出了激波在地面引起的磁場变化与激波初始速度之間的关系。根据上述簡化模型,計算結果表明,在十个地球半径处初始速度为108厘米/秒的激波,传到地面引起的磁場变化大約为60伽(亻馬),这个数值的量級恰好与中低緯度强磁暴的急始变幅相符。  相似文献   

20.
行星际扰动和地磁活动对GEO相对论电子影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1988—2010年小时平均的GOES卫星数据,对地球同步轨道(GEO)相对论电子变化进行了统计分析,研究了相对论电子通量(Fe)增强事件的发展过程,探讨了利于相对论电子通量增强的太阳风和地磁活动条件.主要结论如下:(1)GEO相对论电子通量即使是峰值,也具有明显的地方时特性,最大电子通量出现在磁正午时.午/夜电子通量比率随着太阳风速度(Vsw)增加而增大;在Dst-50nT时相对论电子具有规则的地方时变化.在太阳活动下降相,电子通量与各参数的相关性较好,与其相关性最好的Vsw、Kp指数以及三次根号下的太阳风密度(N)分别出现在电子通量前39~57h、57~80h和12~24h.(2)强(日平均电子通量峰值Femax≥104 pfu)相对论电子事件,在距离太阳活动谷年前两年左右和春秋分期间发生率最高,较弱(104Femax≥103 pfu)事件无此特点;大部分强相对论电子事件中,电子通量在磁暴主相开始增加,较弱事件中则在恢复相开始回升.(3)太阳风密度变化对相对论电子事件的发展具有重要指示作用.电子通量在太阳风密度极大值后0~1天达到极小值,太阳风密度极小值后0~2天达到极大值.(4)90%以上相对论电子事件是在磁暴及高速太阳风的条件下发生的,与其伴随的行星际参数和地磁活动指数极值满足以下条件:Vswmax516km/s,Dstmin-31nT,Nmin2.8cm-3,Nmax14.1cm-3,Bzmin-2.9nT,AEmax698nT.(5)磁暴过程中,Dstmin后日平均电子通量大于103 pfu的发生概率为53%左右,强/弱相对论电子事件占总数比例分别为36%/64%左右,磁暴强度对其无影响.磁暴过程中的Vsw、N和AE指数大小对于能否引起相对论电子增强起着指示作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号