首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The climatic habitat of the hazardous agricultural vermin, Colorado beetle, on the territory of Russia and neighboring countries is computed using the model agroclimatic methods. The meteorological dataset of daily resolution available on the website of All-Russian Research Institute of Hydrometeorological Information-World Data Center is used and the requirements of the species to the habitat climate accepted in agroclimatology are taken into account. The computations are carried out for three time periods: 1951–1970, 1991–2010, and 2031–2050. Climatic characteristics (average annual temperature and accumulated effective temperatures) of the third period were estimated by means of linear interpolation proceeding from the first two periods. It is demonstrated that the changes in climatic habitat boundaries of the second period as compared with the first and third periods and of the third period as compared with the second period have a common trend: the broadening of the habitat takes place in the northern and especially eastern directions. The computed data are corroborated by the observational data on the actual distribution of Colorado beetle on the territory of Russia and neighboring countries.  相似文献   

2.
Abstract

Trends in Canadian temperature and precipitation during the 20th century are analyzed using recently updated and adjusted station data. Six elements, maximum, minimum and mean temperatures along with diurnal temperature range (DTR), precipitation totals and ratio of snowfall to total precipitation are investigated. Anomalies from the 1961–1990 reference period were first obtained at individual stations, and were then used to generate gridded datasets for subsequent trend analyses. Trends were computed for 1900–1998 for southern Canada (south of 60°N), and separately for 1950–1998 for the entire country, due to insufficient data in the high arctic prior to the 1950s.

From 1900–1998, the annual mean temperature has increased between 0.5 and 1.5°C in the south. The warming is greater in minimum temperature than in maximum temperature in the first half of the century, resulting in a decrease of DTR. The greatest warming occurred in the west, with statistically significant increases mostly seen during spring and summer periods. Annual precipitation has also increased from 5% to 35% in southern Canada over the same period. In general, the ratio of snowfall to total precipitation has been increasing due mostly to the increase in winter precipitation which generally falls as snow and an increase of ratio in autumn. Negative trends were identified in some southern regions during spring. From 1950–1998, the pattern of temperature change is distinct: warming in the south and west and cooling in the northeast, with similar magnitudes in both maximum and minimum temperatures. This pattern is mostly evident in winter and spring. Across Canada, precipitation has increased by 5% to 35%, with significant negative trends found in southern regions during winter. Overall, the ratio of snowfall to total precipitation has increased, with significant negative trends occurring mostly in southern Canada during spring.

Indices of abnormal climate conditions are also examined. These indices were defined as areas of Canada for 1950–1998, or southern Canada for 1900–1998, with temperature or precipitation anomalies above the 66th or below the 34th percentiles in their relevant time series. These confirmed the above findings and showed that climate has been becoming gradually wetter and warmer in southern Canada throughout the entire century, and in all of Canada during the latter half of the century.  相似文献   

3.
Urbanisation has burdened cities with many problems associated with growth and the physical environment. Some of the urban locations in India are becoming increasingly vulnerable to natural hazards related to precipitation and flooding. Thus it becomes increasingly important to study the characteristics of these events and their physical explanation. This work studies rainfall trends in Delhi and Mumbai, the two biggest Metropolitan cities of Republic of India, during the period from 1951 to 2004. Precipitation data was studied on basis of months, seasons and years, and the total period divided in the two different time periods of 1951–1980 and 1981–2004 for detailed analysis. Long-term trends in rainfall were determined by Man-Kendall rank statistics and linear regression. Further this study seeks for an explanation for precipitation trends during monsoon period by different global climate phenomena. Principal component analysis and Singular value decomposition were used to find relation between southwest monsoon precipitation and global climatic phenomena using climatic indices. Most of the rainfall at both the stations was found out to be taking place in Southwest monsoon season. The analysis revealed great degree of variability in precipitation at both stations. There is insignificant decrease in long term southwest monsoon rainfall over Delhi and slight significant decreasing trends for long term southwest monsoon rainfall in Mumbai. Decrease in average maximum rainfall in a day was also indicated by statistical analysis for both stations. Southwest monsoon precipitation in Delhi was found directly related to Scandinavian Pattern and East Atlantic/West Russia and inversely related to Pacific Decadal Oscillation, whereas precipitation in Mumbai was found inversely related to Indian ocean dipole, El Ni?o- Southern Oscillation and East Atlantic Pattern.  相似文献   

4.
Changes in climatic parameters are often given in terms of global averages even though large regional variability is generally observed. The study of regional tendencies provides not only supplementary conclusions to more large-scale oriented results but is also of particular interest to local policy-makers and resource managers to have detailed information regarding sensible and influential climatic parameters. In this study, changes in precipitation for the Balearic Islands (Spain) have been analyzed using data from 18 rain gauges with complete daily time series during the period 1951–2006 and two additional sites where only monthly totals were available. Tendencies for maximum and minimum 2-m temperatures have also been derived using data from three thermometric stations with daily time series for the period 1976–2006. The thermometric stations are located at the head of the runways in the airports of the three major islands of the archipelago, where urbanization has arguably not had a relevant impact on the registered values. The annual mean temperature in the mid-troposphere and lower stratosphere has also been analyzed using the Balearics radiosonde data for the period 1981–2006. Results show there is a negative tendency for annual precipitation (163 mm per century) with 85% significance on the sign of the trend. An abrupt decrease in mean yearly precipitation of 65 mm is objectively detected in the time series around 1980. Additionally, the analysis shows that light and heavy daily precipitation (up to 4 mm and above 64 mm, respectively) increase their contribution to the total annual, while the share from moderate-heavy precipitations (16–32 mm) is decreasing. Regarding the thermometric records, minimum temperatures increased at a rate of 5.8°C per century during the 31 years and maximum temperatures also increased at a rate of 5.0°C per century, both having a level of statistical significance for the sign of the linear trend above 99%. Temperatures in the mid-troposphere decreased at a rate of ??5.4°C per century while a tendency of ??7.8°C per century is found in the lower stratosphere. The level of statistical significance for the sign of both the tropospheric and stratospheric linear trends is above 98% despite the great inter-annual variability of both series.  相似文献   

5.
Six snow depth and total precipitation time series recorded in Western Italian Alps between 960 and 2,177 m a.s.l. have been analyzed to investigate variability and trends over the period 1926–2010. The results outline a significant decrease of snow depth in the period 1951–2010 ranging from ?0.2 cm/year in the lowest station up to ?1.4 cm/year in the highest one. The contribution to this negative trend comes mainly from spring. These results have been related to the changes in the amount/frequency of total precipitation and to the temperatures analyzed in former studies. The connections between winter precipitation and large-scale atmospheric forcings have been investigated by looking for regular oscillations embedded in the time series. Two different techniques have been used, the MultiTaperMethod and the Monte Carlo Singular Spectral Analysis. Both highlight oscillations corresponding to 2.4–2.7 year periods which are found to be driven by the North Atlantic Oscillation.  相似文献   

6.
The authors have applied an automated regression-based statistical method, namely, the automated statistical downscaling (ASD) model, to downscale and project the precipitation climatology in an equatorial climate region (Peninsular Malaysia). Five precipitation indices are, principally, downscaled and projected: mean monthly values of precipitation (Mean), standard deviation (STD), 90th percentile of rain day amount, percentage of wet days (Wet-day), and maximum number of consecutive dry days (CDD). The predictors, National Centers for Environmental Prediction (NCEP) products, are taken from the daily series reanalysis data, while the global climate model (GCM) outputs are from the Hadley Centre Coupled Model, version 3 (HadCM3) in A2/B2 emission scenarios and Third-Generation Coupled Global Climate Model (CGCM3) in A2 emission scenario. Meanwhile, the predictand data are taken from the arithmetically averaged rain gauge information and used as a baseline data for the evaluation. The results reveal, from the calibration and validation periods spanning a period of 40 years (1961–2000), the ASD model is capable to downscale the precipitation with reasonable accuracy. Overall, during the validation period, the model simulations with the NCEP predictors produce mean monthly precipitation of 6.18–6.20 mm/day (root mean squared error 0.78 and 0.82 mm/day), interpolated, respectively, on HadCM3 and CGCM3 grids, in contrast to 6.00 mm/day as observation. Nevertheless, the model suffers to perform reasonably well at the time of extreme precipitation and summer time, more specifically to generate the CDD and STD indices. The future projections of precipitation (2011–2099) exhibit that there would be an increase in the precipitation amount and frequency in most of the months. Taking the 1961–2000 timeline as the base period, overall, the annual mean precipitation would indicate a surplus projection by nearly 14~18 % under both GCM output cases (HadCM3 A2/B2 scenarios and CGCM3 A2 scenario). According to the model simulation, the September–November periods might be the more significant months projecting the increment of the precipitation amount around over 50 %, while the precipitation deficit would be seen in March–May periods.  相似文献   

7.
This paper uses a modified form of Thornthwaite’s moisture index to better quantify climate variability by integrating the effects of temperature and precipitation. Using the moisture index, trends were evaluated over the last 112 years (1895–2006), when unique changes in temperature and precipitation have been documented to have occurred. In addition, data on potential evapotranspiration and the moisture index were used to investigate changing climate and vegetation regions. The results show that the eastern half of the country has been getting wetter, even as temperatures have continued to increase in many areas. In particular, conditions have become wetter in the South, Northeast, and East North Central regions. The changing climate is illustrated by computing climate and vegetation regions for three 30-year periods (1910–1939, 1940–1969, and 1970–1999). Climate regions based on the moisture index show an expansion of the Humid region (where precipitation vastly exceeds climatic demands for water) across the East as well as a westward shift in the zero moisture index line. In terms of vegetation zones, the most dramatic change occurs across the Midwestern prairie peninsula where the wetter conditions lead to a westward expansion of conditions favorable for oak–hickory–pine vegetation.  相似文献   

8.
This paper assesses the impacts of climate change on water resources in the upper Ping River Basin of Thailand. A rainfall-runoff model is used to estimate future runoff based on the bias corrected and downscaled ECHAM4/OPYC general circulation model (GCM) precipitation scenarios for three future 5-year periods; the 2023–2027 (2025s), the 2048–2052 (2050s) and 2093–2097 (2095s). Bias-correction and spatial disaggregation techniques are applied to improve the characteristics of raw ECHAM4/OPYC precipitation. Results of future simulations suggest a decrease of 13–19 % in annual streamflow compared to the base period (1998–2002). Results also indicate that there will be a shift in seasonal streamflow pattern. Peak flows in future periods will occur in October–November rather than September as observed in the base period. There will be a significant increase in the streamflow in April with overall decrease in streamflow during the rainy season (May–October) and an increase during the dry season (November–April) for all future time periods considered in the study.  相似文献   

9.
The WMO recommendations on solid precipitation correction, based on generalized results of precipitation gauge intercomparisons performed in 1985–1996, do not take into account systematic errors in precipitation measurements such as wind-induced at high winds and false precipitation blown by wind into the precipitation gauge during strong blizzards at low temperatures, typical of high latitudes. To eliminate these biases in solid precipitation measurements in the Arctic latitudes, special procedures are proposed for three different national methods of precipitation measurement in Russia, the United States (Alaska), and Canada. Differences in the correction methods in these countries are caused by differences in the design of instruments, observation technique, climate, and content of data archives for calculating the measurement errors. Results of application of the proposed procedures for precipitation correction in the Arctic regions of the above-mentioned countries are discussed. The results are compared against the maps of corrected precipitation in the world water budget and snow, ice resources atlases and in the Handbook for Climate of the USSR.  相似文献   

10.
The variations in average annual surface air temperature, precipitation, and runoff in the Selenga River basin (within Russia) are analyzed. It is demonstrated that the considerable increase in average annual temperature of surface air layers occurred in the 1980s-1990s. The decrease in peak water discharge in the rivers and the increase in the frequency of low-water periods were revealed in the forest-steppe and steppe zones of the Selenga River basin in 2001-2010. In the southwestern mountain regions (the Dzhida River basin) the river runoff increased during that period.  相似文献   

11.
Annual and seasonal variability of precipitation observed at 92 stations in Vojvodina (Serbia) were analyzed during the period 1946–2006. The rainfall series were examined by means of the empirical orthogonal functions (EOF). The first set of singular vectors explains from 68.8 % (in summer) to 81.8 % (in winter) of the total variance. The temporal variability of the time series associated with the main EOF configurations (the principal components, PCs) was examined using the Mann–Kendall test and the spectral analysis. The time series of PC1 revealed decreasing trend in the winter and spring precipitation and increasing trend in the autumn, summer, and annual precipitation. The relationships between the first PC and circulation patterns, such as the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, and East Atlantic/West Russia pattern, were also investigated. The PC1, displaying temporal behavior of the first mode, demonstrated evident correspondence with the NAO index in analysis of the annual, winter, and autumn precipitation. Power spectra of the PC1 show statistically significant oscillations of about 3.3 years for the spring precipitation and about 8 and 15 years for the winter precipitation. Comparisons with spectral analysis of authors for some regions in Europe, most of them in the Mediterranean domain, show that similar periodicities are detected.  相似文献   

12.
Summary Positive trend of the North Atlantic Oscillation (NAO) during last several decades was also accompanied by a positive trend of the East Atlantic Western Russia (EAWR) pattern. Decline of the Mediterranean precipitation during the period has also been noted. The precipitation decline over the western part of the region has been linked to the positive trend of the NAO. Explanation for the precipitation decline over the eastern Mediterranean by the role of the EAWR trend has also been suggested. An evaluation of the hypothesis is performed in the current study. A methodology for the determination of the characterizing typical low troposphere circulation during wet-months large-scale correlation-circulation patterns is suggested. The large-scale circulation patterns for three target areas over the northwestern, north-eastern, and southeastern Mediterranean regions are constructed separately for the low and high phase periods of the teleconnection regimes. According to the results, the precipitation decline over the Mediterranean region during the last several decades of the past century is explained by the positive trend of the EAWR, which in its turn was induced by that of the NAO. The trends have lead to the changes in the typical for the wet periods of the year low-troposphere circulation regimes associated with a decline in the water vapor transport from Atlantic.  相似文献   

13.
Time variations in the number of days with heavy precipitation based on data of 93 stations on the territory of Russia are analyzed. Time series of precipitation, corrected by the elimination of main systematic errors of their measurement at the level of their diurnal sums, are used, when computing. The diurnal precipitation sum, exceeding the average long-term diurnal precipitation maximum by three times, was taken as the threshold quantitative criterion, defining “the day with heavy precipitation” concept. This value varies within 10–15 mm/day on the territory of Russia. Extremums fluctuate from 5 to 40 mm/day. Absolute values of linear trends of the annual number of days with heavy precipitation are comparatively small, they fluctuate within ±4 days on the whole territory of Russia. In relative terms, these variations are rather significant, reaching ±40% and more of the corresponding average value for 65 years. The comparison of the spatial distribution of characteristics of linear trends of the annual number of days with heavy precipitation and annual precipitation sum indicates their close conformity.  相似文献   

14.
The computation of thunderstorm and shower activity on the territory of Russia during the warm period (June–August) of 1981–2000 for four observation times (00:00, 06:00, 12:00, and 18:00) is carried out using the local convective cloud model (CCM) and the ERA-40 reanalysis data on the vertical distribution of temperature and humidity. The spatial grid with the resolution of 2.5 × 2.5° is used for the computation. Collected and analyzed are the long-term (1936–1965) in situ data on the distribution of the number of days with the thunderstorm on the territory of Russia using the observational data from the ground-based meteorological stations (about 600 stations located in different regions). As a result, the distribution of the number of days with the thunderstorm and with the convective precipitation on the territory of Russia is plotted and analyzed. It agrees on the whole with the observed data. It is demonstrated that the number of days with the thunderstorm and with the convective precipitation correlate well with each other, that also corresponds to the observational data. It is shown that CCM is applicable to the simulation of cloud convection and associated phenomena.  相似文献   

15.
The aim of this research is to study the spatial and temporal variability of aridity in Iran, through analysis of temperature and precipitation trends during the 48-year period of 1961–2008. In this study, four different aridity criteria have been used to investigate the aridity situation. These aridity indexes included Lang’s index or rain factor, Budyko index or radiational index of dryness, UNEP aridity index, and Thornthwaite moisture index. The results of the analysis indicated that the highest and lowest mean temperatures occurred in July and January respectively in all locations. Among the study locations, Ahvaz with 37.1 °C and Kermanshah with 20.2 °C has the highest and lowest in July. For January, the highest was 12.4 °C for Ahvaz and the lowest was ?4.5 °C for Hamedan and Kermanshah together. The range of monthly mean temperature of study locations indicated that the maximum and minimum difference between day and night temperatures, almost in all study locations, occurred in September and January, respectively, and the highest and lowest fluctuation of temperature was observed in Kerman and Tehran. The temperature anomalies showed that the most significant increasing temperature occurred at the beginning of twenty-first century (2000–2008) in all locations. The long-term mean of monthly rainfall showed that, in most study locations, the maximum and minimum of mean precipitation occurred in winter and summer, respectively. Rasht with 1,355 mm had the highest and Yazd with 55 mm had the lowest of total precipitation compared with other locations. According to precipitation anomalies, all locations experienced dry and wet periods, but generally dry periods occurred more often especially in the beginning of twenty-first century. According to applied different aridity indexes, all the study locations often experienced semi-arid to arid climate, severe water deficit to desert climate, arid to hyperarid climate, and semi-arid climate during the study period.  相似文献   

16.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   

17.
Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901–2011) from 18 meteorological stations. Autocorrelation and Mann–Kendall/modified Mann–Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt–Mann–Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901–2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901–1949, which was reversed during the subsequent period (1950–2011).  相似文献   

18.
Palynological, geomorphological, and relict vegetation evidence point to the existence of cooler and more humid conditions along semiarid and temperate Chile during the Pleistocene. Departing from an actualistic model, and utilizing a regression technique that includes significant independent variables on the basis of R 2 and F statistics, the best fit multivariable model was produced for annual rainfall and snowline elevation. Predicted values for rainfall are obtained by controlling sea surface temperatures and air temperatures (the most significant variables in the model) at different latitudes. A variation of only 1 °C of the winter sea and air temperatures induces more than a doubling of the annual precipitation in north-central Chile, and increases by nearly fifty percent in southern Chile. Entering the predicted values of precipitation and lowering the winter temperatures by 1 or 2 °C produces a slight depression of the snowline in semiarid north-central Chile and a significant descent in southern Chile. The predicted depression of the snowline coincided well with geomorphological evidence of glacial advances and fossil periglacial phenomena in the Andes. Cooling and increased precipitation during the Pleistocene pluvial elicited northward shifts of the temperate rainforest of southern Chile in the order of 7 deg latitude.  相似文献   

19.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

20.
从梅雨预测的业务需求出发,系统开展了CFSv2模式对2018年浙江梅雨期降水预报能力的多时间尺度评估。结果发现3月1日—5月31日的起报结果整体上未能较准确地预测6月浙江大部降水偏少的趋势、仅5月31日的预测结果与实况相符;在延伸期尺度上,CFSv2预测的梅雨期总降水量较实况偏少30%左右;基于相关系数、均方根误差和新定义的综合预报技巧指数等指标分析模式的延伸期预报性能,发现对梅雨期总降水量、逐日区域平均降水量和逐日全省各站降水量的预报技巧有限,对浙江梅雨区的预报水平总体高于浙江全省。评估结果表明CFSv2预报产品表现出显著的系统性干偏差;在延伸期尺度上,随着预报时效的缩短,预报效果并非逐步提升、而是客观存在一个最佳预报时效,各起报日也分别对应着不同的最优预报时段,整体而言梅雨降水的延伸期预测可能对初值并不敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号