首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is one of the crucial environmental factors affecting crop production. Synchronizing crop phenology with expected or predicted seasonal soil moisture supply is an effective approach to avoid drought impact. To assess the potential for drought avoidance, this study investigated the long-term climate data of four locations (Bojnourd, Mashhad, Sabzevar, and Torbat Heydarieh) in Khorasan province, in the northeast of Iran, with respect to the four dominant crops (common bean, lentil, peanut, and potato). Weekly water deficit defined as the difference between weekly precipitation and weekly potential evapotranspiration was calculated. Whenever the weekly water deficit was larger than the critical water demand of a crop, the probability for drought was determined. Results showed that Sabzevar has the highest average maximum temperature (24.6 °C), minimum temperature (11.7 °C), weekly evapotranspiration (32.1 mm), and weekly water deficit (28.3 mm) and has the lowest average weekly precipitation (3.8 mm). However, the lowest mean maximum temperature (19.7 °C), minimum temperature (6.9 °C), weekly evapotranspiration (22.5 mm), and weekly water deficit (17.5 mm) occur in Bojnourd. This location shows the shortest period of water deficit during the growing season for all crops except potato, which also experienced drought at the end of the growing season. Sabzevar and Torbat Heydarieh experienced the highest probability of occurrence and longest duration of drought during the growing season for all crops. The result of this study will be helpful for farmers in order to reduce drought impact and enable them to match crop phenology with periods during the growing season when water supply is more abundant.  相似文献   

2.
Northwest China is the driest region in China and the regional climate fluctuated dramatically during the last century. Aridity index, as the ratio between potential evapotranspiration and precipitation, is a good indicator to represent regional climate character. In this study, the change and attribution of the aridity index was investigated in northwest China using the observed climate data from 80 national meteorological stations during 1960–2010. The spatial and temporal variabilities of the aridity index shows that the annual aridity index decreased significantly (P?<?0.05) by 0.048 year?1, indicating that northwest China became wetter from 1960 to 2010. A differentiation equation method was used to attribute the change in aridity index to climate variables. The results indicate that the aridity index was most sensitive to the change in precipitation, followed by vapor pressure, solar radiation, wind speed, and air temperature. Increase in air temperature should have led to an increase in aridity index, but this effect had been offset by the increase in precipitation and vapor pressure and the decrease in wind speed. Increasing precipitation, which contributed 91.7 % of the decrease in the aridity index, was the dominant factor to the decrease in the aridity index in northwest China from 1960 to 2010.  相似文献   

3.
The 2m temperature (T2m) and precipitation from five regional climate models (RCMs), which participated in the ENSEMBLES project and were integrated at a 25-km horizontal resolution, are compared with observed climatological data from 13 stations located in the Croatian coastal zone. The twentieth century climate was simulated by forcing RCMs with identical boundary conditions from the ERA-40 reanalysis and the ECHAM5/MPI-OM global climate model (GCM); climate change in the twenty-first century is based on the A1B scenario and assessed from the GCM-forced RCMs’ integrations. When forced by ERA-40, most RCMs exhibit cold bias in winter which contributes to an overestimation of the T2m annual cycle amplitude and the errors in interannual variability are in all RCMs smaller than those in the climatological mean. All models underestimate observed warming trends in the period 1951–2010. The largest precipitation biases coincide with locations/seasons with small observed amounts but large precipitation amounts near high orography are relatively well reproduced. When forced by the same GCM all RCMs exhibit a warming in the cold half-year and a cooling (or weak warming) in the warm period, implying a strong impact of GCM boundary forcing. The future eastern Adriatic climate is characterised by a warming, up to +5 °C towards the end of the twenty-first century; for precipitation, no clear signal is evident in the first half of the twenty-first century, but a reduction in precipitation during summer prevails in the second half. It is argued that land-sea contrast and complex coastal configuration of the Croatian coast, i.e. multitude of island and well indented coastline, have a major impact on small-scale variability. Orography plays important role only at small number of coastal locations. We hypothesise that the parameterisations related to land surface processes and soil hydrology have relatively stronger impact on variability than orography at those locations that include a relatively large fraction of land (most coastal stations), but affecting less strongly locations at the Adriatic islands.  相似文献   

4.
Recent climate change is substantially affecting the spatial pattern of geographical zones, and the temporal and spatial inconsistency of climatic warming and drying patterns contributes to the complexity of the shifting of temperature and aridity zones. Eastern Inner Mongolia, China, located in the interface region of different biomes and ecogeographic zones, has experienced dramatic drying and warming over the past several decades. In this study, the annual accumulated temperature above 10 °C (AAT10) and the aridity index, two key indicators in geographical regionalization, are used to assess warming and drying processes and track the movements of temperature and aridity zones from 1960 to 2008. The results show a significant warming at the regional level from 1960 to 2008 with an AAT10 increase rate of 7.89 °C·d/year (p?<?0.001) in Eastern Inner Mongolia, while the drying trend was not significant during this period. Spatial heterogeneity of warming and drying distributions was also evident. Analysis of warming and drying via piecewise regression revealed two separate, specific trends between the first 31 years (1960–1990) and the subsequent 18 years (1991–2008). Generally, mild warming and very slight wetting occurred prior to 1990, while after 1991 both warming and drying were significant and enhanced. Continuous warming drove a northward shift of temperature zones from the 1960s to 2000s, while aridity zones displayed enhanced temporal and spatial variability. Climate change effects on temperature and aridity zones imply that the patterns of cropping systems, macro-ecosystems, and human land use modes are potentially undergoing migration and modification due to climate change.  相似文献   

5.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

6.
In this study, we apply De Martonne and Pinna combinative indices to analyze the aridity in Central Serbia. Our dataset consists of mean monthly surface air temperature (MMT) and mean monthly precipitation (MMP) for 26 meteorological stations during the period 1949–2015. MMT and MMP are used for calculating monthly, seasonal, and annual aridity indices for period of 66 years. According to the De Martonne climate classification, we determine five, three, and four types of climate on the monthly, seasonal, and annual basis, respectively. During the observed period, winter was extremely humid, spring and autumn were humid, and summer was semi-humid. Humid and semi-humid climate with Mediterranean vegetation are identified by the annual Pinna combinative index. We find that there is no change in aridity trend in Central Serbia for the period 1949–2015. Aridity indices are additionally compared with the North Atlantic Oscillation and El-Niño South Oscillation in order to establish a possible connection with the large-scale processes. Results are further compared with several earlier studies of aridity in Serbia. With this study, the analysis of aridity in whole Serbia has become complete.  相似文献   

7.
This paper describes a Bayesian methodology for prediction of multivariate probability distribution functions (PDFs) for transient regional climate change. The approach is based upon PDFs for the equilibrium response to doubled carbon dioxide, derived from a comprehensive sampling of uncertainties in modelling of surface and atmospheric processes, and constrained by multiannual mean observations of recent climate. These PDFs are sampled and scaled by global mean temperature predicted by a Simple Climate Model (SCM), in order to emulate corresponding transient responses. The sampled projections are then reweighted, based upon the likelihood that they correctly replicate observed historical changes in surface temperature, and combined to provide PDFs for 20 year averages of regional temperature and precipitation changes to the end of the twenty-first century, for the A1B emissions scenario. The PDFs also account for modelling uncertainties associated with aerosol forcing, ocean heat uptake and the terrestrial carbon cycle, sampled using SCM configurations calibrated to the response of perturbed physics ensembles generated using the Hadley Centre climate model HadCM3, and other international climate model simulations. Weighting the projections using observational metrics of recent mean climate is found to be as effective at constraining the future transient response as metrics based on historical trends. The spread in global temperature response due to modelling uncertainty in the carbon cycle feedbacks is determined to be about 65–80 % of the spread arising from uncertainties in modelling atmospheric, oceanic and aerosol processes of the climate system. Early twenty-first century aerosol forcing is found to be extremely unlikely to be less than ?1.7 W m?2. Our technique provides a rigorous and formal method of combining several lines of evidence used in the previous IPCC expert assessment of the Transient Climate Response. The 10th, 50th and 90th percentiles of our observationally constrained PDF for the Transient Climate Response are 1.6, 2.0 and 2.4 °C respectively, compared with the 10–90 % range of 1.0–3.0 °C assessed by the IPCC.  相似文献   

8.
This is the second of the two-part paper series on the analysis and evaluation of the Fifth phase of Coupled Model Intercomparison Project (CMIP5) simulation of contemporary climate as well as IPCC, AR5 Representative Concentrations Pathways (RCP), 4.5 and 8.5 scenarios projections of the Greater Horn of Africa (GHA) Climate. In the first part (Otieno and Anyah in Clim Dyn, 2012) we focused on the historical simulations, whereas this second part primarily focuses on future projections based on the two scenarios. Six Earth System Models (ESMs) from CMIP5 archive have been used to characterize projected changes in seasonal and annual mean precipitation, temperature and the hydrological cycle by the middle of twenty-first century over the GHA region, based on IPCC, 5th Assessment Report (AR5) RCP4.5 and RCP8.5 scenarios. Nearly all the models outputs analyzed reproduce the correct mean annual cycle of precipitation, with some biases among the models in capturing the correct peak of precipitation cycle, more so, March–April–May (MAM) seasonal rainfall over the equatorial GHA region. However, there is significant variation among models in projected precipitation anomalies, with some models projecting an average increase as others project a decrease in precipitation during different seasons. The ensemble mean of the ESMs indicates that the GHA region has been experiencing a steady increase in both precipitation and temperature beginning in the early 1980s and 1970s respectively in both RCP4.5 and RCP8.5 scenarios. Going by the ensemble means, temperatures are projected to steadily increase uniformly in all the seasons at a rate of 0.3/0.5 °C/decade under RCP4.5/8.5 scenarios over northern GHA region leading to an approximate temperature increase of 2/3 °C by the middle of the century. On the other hand, temperatures will likely increase at a rate of 0.3/0.4 °C/decade under RCP4.5/8.5 scenarios in both equatorial and southern GHA region leading to an approximate temperature increase of 2/2.5 °C by the middle of twenty-first century. Nonetheless, projected precipitation increase varied across seasons and sub-regions. With the exception of the equatorial region, that is projected to experience precipitation increase during DJF season, most sub-regions are projected to experience precipitation increase within their peak seasons, with the highest rate of increase experienced during DJF and OND seasons over southern and equatorial GHA regions respectively. Notably, as precipitation increases, the deficit (E < P) between evaporation (E) and precipitation (P) increased over the years, with a negatively skewed distribution. This generally implies that there is a high likelihood of an increased deficit in local moisture supply. This remarkable change in the general hydrological cycle (i.e. deficit in local moisture) is projected to be also coincident with intensified westerly anomaly influx from the Congo basin into the region. However, better understanding of the detailed changes in hydrological cycle will require comprehensive water budget analyses that require daily or sub-daily variables, and was not a specific focus of the present study.  相似文献   

9.
In this study, human-induced climate change over the Eastern Mediterranean–Black Sea region has been analyzed for the twenty-first century by performing regional climate model simulations forced with large-scale fields from three different global circulation models (GCMs). Climate projections have been produced with Special Report on Emissions Scenarios A2, A1FI and B1 scenarios, which provide greater diversity in climate information for future period. The gradual increases for temperature are widely apparent during the twenty-first century for each scenario simulation, but ECHAM5-driven simulation generally has a weaker signal for all seasons compared to CCSM3 simulations except for the Fertile Crescent. The contrast in future temperature change between the winter and summer seasons is very strong for CCSM3-A2-driven and HadCM3-A2-driven simulations over Carpathians and Balkans, 4–5 °C. In addition, winter runoff over mountainous region of Turkey, which feeds many river systems including the Euphrates and Tigris, increases in second half of the century since the snowmelt process accelerates where the elevation is higher than 1,500 m. Moreover, analysis of daily temperature outputs reveals that the gradual decrease in daily minimum temperature variability for January during the twenty-first century is apparent over Carpathians and Balkans. Analysis of daily precipitation extremes shows that positive trend is clear during the last two decades of the twenty-first century over Carpathians for both CCSM3-driven and ECHAM5-driven simulations. Multiple-GCM driven regional climate simulations contribute to the quantification of the range of climate change over a region by performing detailed comparisons between the simulations.  相似文献   

10.
We separate and quantify the sources of uncertainty in projections of regional (~2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.  相似文献   

11.
The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.  相似文献   

12.
Uncertainty assessments of climate change projections over South America   总被引:2,自引:0,他引:2  
This paper assesses the uncertainties involved in the projections of seasonal temperature and precipitation changes over South America in the twenty-first century. Climate simulations generated by 24 general circulation models are weighted according to the reliability ensemble averaging (REA) approach. The results show that the REA mean temperature change is slightly smaller over South America compared to the simple ensemble mean. Higher reliability in the temperature projections is found over the La Plata basin, and a larger uncertainty range is located in the Amazon. A temperature increase exceeding 2 °C is found to have a very likely (>90 %) probability of occurrence for the entire South American continent in all seasons, and a more likely than not (>50 %) probability of exceeding 4 °C by the end of this century is found over northwest South America, the Amazon Basin, and Northeast Brazil. For precipitation, the projected changes have the same magnitude as the uncertainty range and are comparable to natural variability.  相似文献   

13.
The Early–Middle Eocene palynoflora and paleoclimate of Changchang Basin, Hainan Island, South China, is described in the present paper and is compared with that of the Middle–Late Eocene, Hunchun City, Jilin Province, North China. The nearest living relatives (NLRs) of the recovered palynotaxa suggest a subtropical evergreen or deciduous broad-leaved forest at the center of the basin but a temperate evergreen or deciduous broad-leaved forest and needle-leaved forest growing in the peripheral part of the basin. Based on the climatic preferences of the NLRs, the climate in the Changchang Basin during the Early–Middle Eocene was warm and humid subtropical with a mean annual temperature of 14.2–19.8°C, a mean temperature of the warmest month of 22.5–29.1°C, a mean temperature of the coldest month of 1.7–11.9°C, a difference of temperature between coldest and warmest months of 12.1–24.6°C, a mean annual precipitation of 784.7–1,113.3 mm, a mean maximum monthly precipitation of 141.5–268.1 mm and a mean minimum monthly precipitation of 6.9–14.1 mm. A comparison of the palynoflora and paleoclimate between the Changchang Basin and Hunchun City, suggests essentially a similar climate in South and North China during Eocene time in contrast to the oceanic tropical climate in South China and cool dry temperate climate in North China as at present.  相似文献   

14.
Future climate trends for the Southwestern US, based on the climate models included in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, project a more arid climate in the region during the 21st century. However, future climate variability associated with El Niño Southern Oscillation (ENSO)—an important driver for winter climate variability in the region—have not been addressed. In this work we evaluate future winter ENSO projections derived from two selected IPCC models, and their effect on Southwestern US climate. We first evaluate the ability of the IPCC coupled models to represent the climate of the Southwest, selecting the two models that best capture seasonal precipitation and temperature over the region and realistically represent ENSO variability (Max Planck Institute’s ECHAM5 and the UK Met Office HadCM3). Our work shows that the projected future aridity of the region will be dramatically amplified during La Niña conditions, as anomalies over a drier mean state, and will be characterized by higher temperatures (~0.5°C) and lower precipitation (~3 mm/mnt) than the projected trends. These results have important implications for water managers in the Southwest who must prepare for more intense winter aridity associated with future ENSO conditions.  相似文献   

15.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

16.
A distinct aridity tread in China in last 100 years is presented by applying a linear fitting to both the climate re-cords and the hydrological records, which is supported by evidence of environmental changes and seems to be associ-ated with a global warming trend during this period.The Mann Kendall Rank statistic test reveals a very interesting feature that the climate of China entered into a dry regime abruptly in about l920’s, which synchronized with the rapid warming of the global temperature at almost the same time.According to an analysis of the meridional profile of observed global zonal mean precipitation anomalies during the peak period of global warming (1930-1940), the drought occurred in whole middle latitude zone (25oN-55oN) of the Northern Hemisphere, where the most part of China is located in. Although this pattern is in good agreement with the latitude distribution of the difference of zonal mean rates of precipitation between 4 × CO2 and 1 × CO2 simu-lated by climate model (Manabe and Wetherald, 1983), more studies are required to understand the linkage between the aridity trend in China and the greenhouse effect.The EOF analysis of the Northern Hemisphere sea level pressure for the season of June to August shows an ab-rupt change of the time coefficient of its first eigenvector from positive to negative in mid-lP^s, indicating an enhancement of the subtropical high over Southeast Asia and the western Pacific after that time. This is an atmos-pheric circulation pattern that is favorable to the development of dry climate in China.  相似文献   

17.
Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.  相似文献   

18.
基于RFE2.0模型和Penman-Monteith模型,采用潜在蒸散降水比分析了2001—2010年青藏高原生长季(5—9月)干湿气候的时空变化格局,并对其影响因素进行了探讨。结果表明:(1)干旱和半干旱区占整个青藏高原区域的67%,主要集中在高原中部及中部以北;(2)2001—2010年有25%的区域在逐渐变干,北部干旱程度总体上在逐渐减轻,南部及东南部有变干倾向;(3)降水是导致高原区域干湿气候空间格局差异的主要因素,高原干湿气候对潜在蒸散变化的敏感性最强。  相似文献   

19.
We investigate the simulated temperature and precipitation of the HIRHAM regional climate model using systematic variations in domain size, resolution and detailed location in a total of eight simulations. HIRHAM was forced by ERA-Interim boundary data and the simulations focused on higher resolutions in the range of 5.5–12 km. HIRHAM outputs of seasonal precipitation and temperature were assessed by calculating distributed model errors against a higher resolution data set covering Denmark and a 0.25° resolution data set covering Europe. Furthermore the simulations were statistically tested against the Danish data set using bootstrap statistics. The results from the distributed validation of precipitation showed lower errors for the winter (DJF) season compared to the spring (MAM), fall (SON) and, in particular, summer (JJA) seasons for both validation data sets. For temperature, the pattern was in the opposite direction, with the lowest errors occurring for the JJA season. These seasonal patterns between precipitation and temperature are seen in the bootstrap analysis. It also showed that using a 4,000 × 2,800 km simulation with an 11 km resolution produced the highest significance levels. Also, the temperature errors were more highly significant than precipitation. In similarly sized domains, 12 of 16 combinations of variables, observation validation data and seasons showed better results for the highest resolution domain, but generally the most significant improvements were seen when varying the domain size.  相似文献   

20.
Spatial climate models were developed for México and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961–1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-half of the number of observations, and reasonable standard errors for the surfaces would be less than 1°C for temperature and 10–15% for precipitation. Monthly normals were updated for three time periods according to three General Circulation Models and three emission scenarios. On average, mean annual temperature would increase 1.5°C by year 2030, 2.3°C by year 2060 and 3.7°C by year 2090; annual precipitation would decrease ?6.7% by year 2030, ?9.0% by year 2060 and ?18.2% by year 2090. By converting monthly means into a series of variables relevant to biology (e. g., degree-days > 5°C, aridity index), the models are directly suited for inferring plant–climate relationships and, therefore, in assessing impact of and developing programs for accommodating global warming. Programs are outlined for (a) assisting migration of four commercially important species of pine distributed in altitudinal sequence in Michoacán State (b) developing conservation programs in the floristically diverse Tehuacán Valley, and (c) perpetuating Pinus chiapensis, a threatened endemic. Climate surfaces, point or gridded climatic estimates and maps are available at http://forest.moscowfsl.wsu.edu/climate/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号