首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the Recent lobe of the Fraser River delta peat accumulation has actively occurred on the distal lower dilta plain, the transition between upper and lower delta plains, and the alluvial plain.Distal lower delta plain peats developed from widespread salt and brackish marshes and were not influenced appreciably by fluvial activity. Lateral development of the marsh facies were controlled by compaction and eustatic sea level rise. The resulting thin, discontinuous peat network contains numerous silty clay partings and high concentrations of sulphur. Freshwater marsh facies formed but were later in part eroded and altered by transgressing marine waters. The peats overlie a thin, fluvial, fining-upward sequence which in turn overlies a thick, coarsening-upward, prodelta—delta front succession.Lower delta plain—upper delta plain peats initially developed from interdistributary brackish marshes and were later fluvially influenced as the delta prograded. The thickest peats occur in areas where distributary channels were abandoned earliest. Sphagnum biofacies replace sedge-grass-dominated communities except along active channel margins, where the sedge-grass facies is intercalated with overbank and splay deposits. The peats are underlain by a relatively thin sequence of fluvial deposits which in turn is underlain by a major coarsening-upward delta front and pro-delta sequence.Alluvial plain peats accumulated in back swamp environments of the flood plain. Earliest sedge-clay and gyttjae peats developed over thin fining-upward fluvial cycles or are interlaminated with fine-grained flood deposits. Thickest accumulations occur where peat fills small avulsed flood channels. Overlying sedge-grass and Sphagnum biofacies are horizontally stratified and commonly have sharp boundaries with fine-grained flood sediments. At active channel margins however, sedge-grass peats are intercalated with natural levee deposits consisting of silty clay. These levees reduce both the number and size of crevasse splay deposits.Coal originating from peats of the different environments of the Fraser delta would vary markedly in character. Peats of the lower delta plain will form thin lenticular coal seams with numerous splits and have a high ash and sulphur content. Peats from the lower to upper delta plain will be laterally extensive and of variable thickness and quality. Basal portions of the seams will contain numerous splits and have a high sulphur content whereas upper portions will be of higher quality. Peats from the upper delta plain—alluvial plain will form thick, isolated and laterally restricted coal seams characterized by low ash and sulphur contents.  相似文献   

2.
赵凌云 《地质与勘探》2023,59(5):974-984
成煤环境与煤质特征关系紧密,泥炭沼泽期陆源输入强度、海水进退以及氧化还原条件对煤中元素分布和组成具有重要影响。本次研究利用贵州织金县以那地区三个煤矿勘查区共46口钻孔主采煤层的煤质分析结果,分析了龙潭组自下而上煤质参数分布特征,并在此基础上探讨了硫分和灰成分指数对成煤环境的指示作用。研究结果表明:(1)以那地区无烟煤全硫分含量较低,平均为2.19%,以无机硫为主,煤灰分中主量元素以SiO2为主,Al2O3和Fe2O3次之,其他含量较低;(2)各煤层全硫含量、有机/无机硫在全硫中占比、主量元素组合(Fe2O3+CaO+MgO和SiO2+Al2O3)含量呈现相互匹配的变化规律,煤灰成分指数变化规律不明显;(3)以那地区龙潭组自下而上经历了三期海水进退过程,发育潮坪下三角洲平原、三角洲分流间湾和潮坪-瀉湖三种成煤环境,硫分与灰成分指数在成煤环境指示作用上具有较好的一致性。  相似文献   

3.
以经典沉积学理论为基础,结合现场工作的成果,对浑江煤田石炭—二叠系的沉积环境和聚煤模式进行了研究。研究结果表明:研究区石炭—二叠系沉积环境是一个完整的由海侵到海退的连续沉积过程。太原组煤层聚煤模式有5种,分别为泻后泥炭坪成煤、岛后泥炭坪成煤、潮汐三角洲泥炭坪成煤、支流间湾泥炭坪成煤、混合泥炭坪成煤;山西组1号、2号、3号煤层均形成河流体系和河流—湖泊复合体系。  相似文献   

4.
刘焕杰 《沉积学报》1988,6(2):42-49
本文论述了陆表海障壁海岸环境是我国南方晚古生代含煤建造的主要古地理条件,潮汐沉积是含煤建造的重要组成部分,一些煤层形成于潮汐流为主要水动力条件的泥炭坪环境中。论文提出了泥炭坪属于潮坪环境,而不是泥炭沼泽的论点;探讨了泥炭坪的成因标志及其所形成的煤层特点;最后指出了这些特点将成为煤田的普查、勘探、开采和利用的重要标志。  相似文献   

5.
The Carboniferous succession in the Donets Basin hosts about 130 seams, each with a thickness over 0.45 m. Nine economically important seams from the (south)western Donets Basin are studied using organic petrographical, inorganic geochemical, and organic geochemical techniques. The main aim of the study is the reconstruction of peat facies of Serpukhovian (Mississippian) and Moscovian (Middle Pennsylvanian) coals.Formation of major coal seams commenced during Serpukhovian times. Early Serpukhovian coal accumulated in a relatively narrow shore-zone and is rich in inertinite and liptinite. Very low ash yields, low to moderate sulphur contents, and upward increasing inertinite contents suggest coal deposition in raised mires.Moscovian coal has a significantly wider lateral extension and is generally rich in vitrinite. Coal properties vary widely in response to different peat facies. Low-sulphur, low-ash k7 coal was formed in a raised mire or in a low-lying mire without detrital input. l1 and l3 seams containing several fluvial partings were formed in low-lying mires. Both seams are more than 2 m thick. Seams m2 and m3 contain high-sulphur coal, a consequence of deposition in a peat with marine influence. In contrast, syngenetic sulphur content is low in the m51 upper seam, which was formed in a lacustrine setting. The late Moscovian n1 seam, up to 2.4 m thick, accumulated in a swamp with a vegetation rich in bryophytes and pteridophytes. The properties of the n1 seam are transitional between those of Serpukhovian and other Moscovian seams. Differences in maceral composition between Serpukhovian and Moscovian coals probably reflect changes in climate and vegetation type.Tuff layers are observed in the l1, l3, and m3 seams. The l3 and m3 seams contain abundant authigenic quartz. Trace element contents are high in many seams. As contents are especially high in seams c102, k7, l3 and m3. Ash in the l3 seam contains up to 8000 ppm As. Co is enriched near the base of several seams. Maxima up to 2400 ppm occur in the ash of the k7 and l3 seams. Cd contents in ash are frequently as high as 30 or 40 ppm.  相似文献   

6.
The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10–20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods.The upper part of the coal measures consists of sandstone lithofacies of fluvial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic, barrier shoreface, tidal and mire) and marine environments. The fluvial sandstone lithofacies accumulated in channels during a sea-level stillstand. The channels were infilled by coeval braided and meandering streams prior to transgression. Continued transgression, ranging from tidal channel-estuarine incursions to widespread but uneven paleoshoreline encroachment, accompanied by moderate basin subsidence, is marked by a stacked, back-stepping geometry of bioturbated sandstone and marine mudstone lithofacies. Final retrogradation (sea-level highstand) is marked by backfilling of estuaries and by rapid landward deposition of the marine Kaiata Formation in the late Eocene.  相似文献   

7.
The Mukah coal accumulated in the Balingian Formation where the time-stratigraphic position is poorly defined by fauna, though a probable Late Miocene age has always been assigned to this formation. Samples collected in the present study that yielded an abundance of Casuarina pollen associated with occurrences of Dacrydium, Stenochlaena palustris, Florschuetzia levipoli and also Stenochlaena areolaris spores, compare closely to zone PR9 of the palynological zonation of the Malay Basin, and can be tied to depositional sequences of Malay Basin Seismic sequences I2000/I3000, indicating an Early Miocene age for the studied coal. The Early Miocene age shows that the Mukah coal was formed during the collision between Luconia Block–Dangerous Grounds with the Borneo that lasted from Late Eocene to late Early Miocene. The rapid increase of deposition base-level caused by the collision is clearly reflected by the architecture of the Mukah coal seams that were generally thin, and also by the reverse order of the paleo-peat bodies.The studied coal samples contained large amounts of detrohuminite without the enrichment of liptinite group macerals, usually explained by the dominance of herbaceous plants in the paleomires. However, the pollen assemblages recovered in the present study provide no support for a ‘herbaceous’ swamp, instead the peats were likely formed mainly from forest vegetation based on the recovery of dominant arboreal pollen assemblages in the present study. Palynomorph assemblages recovered in the present study, with abundance of Casuarina pollen associated with common occurrences of Dacrydium, strongly suggest Kerangas vegetation and Kerapah type peat swamps, indicating a very wet climate. The occurrence of rattan and Pandanus pollens shows that the kerapah type peat swamps were locally bordered by rattan and Pandanus swamps. This shows that the prevailing use of coal petrography to discern the type of vegetation that was present in the peat-forming mires may lead to wrong conclusions. Therefore, a multi-disciplinary approach must be applied for a more accurate and reliable spatial interpretation of the type of vegetation that was present in the peat-forming mires.Consistent with the low sulphur content, evidence from the palynomorph assemblages recovered from the coal seams shows that the coal-forming peat was deposited in freshwater mires with little or no marine influence, despite the fact that the accumulation of the Mukah coal-forming peat took place within a coastal plain setting. Moreover, the fauna present in the host rock formation also suggested a brackish-water environment of deposition.  相似文献   

8.
海相成煤论进展   总被引:11,自引:2,他引:9  
海相成煤论的提出与深化,必将带来含煤沉积学诸多领域的新变革与新进展。本文从泥炭坪海相成煤模式、现代热带红树林潮坪比较沉积学研究、关于含煤建造中的潮汐沉积与陆表海性质、台地、堡岛及其复合的含煤建造沉积体系、聚煤盆地的地质事件及其沉积记录、煤田岩相古地理研究方法论及巨型聚煤盆地的整体研究诸领域论述了所取得的成果与新时展,从而丰富和深化了海相成煤论.为重新认识我国晚古生代巨型聚煤盆地,探求新的聚煤规律,扩大新的煤炭资源奠定基础.  相似文献   

9.
The coal-bearing sediments and coal seams of the Karoo Basin, Southern Africa are described and discussed. The Karoo Basin is bounded on its southern margin by the Cape Fold Belt, onlaps onto the Kaapvaal Craton in the north and is classified as a foreland basin. Coal seams are present within the Early Permian Vryheid Formation and the Triassic Molteno Formation.The peats of the Vryheid Formation accumulated within swamps in a cool temperate climatic regime. Lower and upper delta plain, back-barrier and fluvial environments were associated with peat formation. Thick, laterally extensive coal seams have preferentially accumulated in fluvial environments. The coals are in general inertinite-rich and high in ash. However, increasing vitrinite and decreasing ash contents within seams occur from west to east across the coalfields. The Triassic Molteno coal seams accumulated with aerially restricted swamps in fluvial environments. These Molteno coals are thin, laterally impersistent, vitrinite-rich and shaly, and formed under a warm temperate climatic regime.Palaeoclimate, depositional systems, differential subsidence and basin tectonics influence to varying degrees, the maceral content, thickness and lateral extent of coal seams. However, the geographic position of peat-forming swamps within a foreland basin, coupled with basin tectonics and differential subsidence are envisaged as the primary controls on coal parameters. The Permian coals are situated in proximal positions on the passive margin of the foreland basin. Here, subsidence was limited which enhanced oxidation of organic matter and hence the formation of inertinitic coals. The coals in this tectonic setting are thick and laterally extensive. The Triassci coals are situated within the tectonically active foreland basin margin. Rapid subsidence and sedimentation rates occurred during peat formation which resulted in the preservation of thin, laterally impersistent, high ash, vitrinite-rich, shaly coals.  相似文献   

10.
基于原始测试数据分析了山西白额勘探区石炭二叠纪各主要煤层煤质特征与成煤环境的关系。研究表明,区内主要可采煤层煤的显微组分均以镜质组为主,约占76%,惰质组约占19%。各煤层灰分产率总体为低-中灰煤,2、3号煤硫分属特低硫-中高硫,10号煤硫分为中高-高硫。成煤环境的水介质由咸水-半咸水-淡水,导致煤层原煤全硫及微量元素含量由下向上降低,同一煤层顶板附近煤中微量元素含量低于底板附近煤层。聚煤特征决定了煤中伴生元素的地球化学行为,使得区内煤中微量元素含量普遍较低,无明显伴生元素富集。  相似文献   

11.
运用层序地层学有关理论和方法,分析了浑江煤田石炭系-二叠系含煤岩系的层序,探讨了聚煤作用的控制因素。石炭纪-二叠纪含煤地层共识别出4个层序边界,划分为3个三级层序。为分析煤层厚度与地层厚度及砂岩百分含量的关系,绘制了三维相关图。研究表明,层序2地层厚度在40-70 m时,层序3地层厚度在50-80 m时,煤层发育较厚,而此时砂岩百分含量小于50%,表明有利于煤层聚积的环境是沉降速率中等、陆源碎屑供给相对较少的沉积环境,主要是三角洲间湾以及下三角洲平原地区。研究区含煤岩系层序地层格架中,不同层序沉积时期,煤层的分布有所不同,对于层序2来说,主要可采煤层分布在最大海泛带两侧,而层序3主要可采煤层分布在海侵面附近,此时较低的泥炭堆积速率与较慢的可容空间增加速率相平衡,从而形成该煤层。  相似文献   

12.
华北晚古生代成煤环境与成煤模式多样性研究   总被引:23,自引:2,他引:23  
华北晚古生代聚煤盆地存在活动体系成煤环境和废弃体系成煤环境。前者的海相成煤环境主要为泻湖泥炭坪,陆相成煤环境以三角洲平原沼泽意义最大。晚石炭世至晚二叠世,海相为主的成煤环境逐渐被陆相为主的成煤环境所取代,由盆缘到盆内成煤环境总体呈环带状展布。成煤环境差异性影响了成煤特点,这些成煤特点成为识别海、陆相煤层的显著相标志。华北晚古生代聚煤盆地在时间上和空间上存在成煤模式的多样性,以陆表海滨岸成煤模式、废弃碎屑体系成煤模式和浅水三角洲成煤模式为主。  相似文献   

13.
The paralic, Lower-Middle Jurassic Bagå Formation of the Island of Bornholm, Denmark, was deposited in a fault-bounded, subsiding, pull-apart basin. The formation is up to 400 m thick and contains more than 50 coal seams. Twelve of these have been investigated petrographically and geochemically to provide basic information on the composition of the relatively unknown Jurassic coals. The peat-forming environments represented by the seams and the associated siliciclastic sediments are interpreted.The seams represent three types of environments with organic matter deposition. Peat accumulation occurred in low-lying areas situated between river channels in a coastal plain environment undergoing overall transgression. The coals have a relatively uniform, huminite-rich petrographic composition, indicating that the precursor mires were dominated by persistent, water-saturated and anoxic conditions. The swamps were probably occupied by a small-statured flora with cellulose-rich tissues. Significant bacterial activity in the peat swamps is suggested by an abundance of hopanes. Influence from marine water was not common but occurred occasionally. During peat accumulation, the depositional conditions were stable and quiet. The small thicknesses of the seams (8–57 cm thick) indicate relatively short periods of peat formation (average c. 2300 yr), due to continued base-level rise, controlled by subsidence, and an overall eustatic rise, causing repeated changes in the sedimentary regimes. The coal seams are of low rank and were buried to a depth of 1100–1200 m before uplift, due to Late Cretaceous-early Tertiary basin inversion and Neogene uplift.  相似文献   

14.
采用光学显微镜、X射线荧光光谱(XFS)和电感耦合等离子体质谱(ICP-MS)等方法测定了大同煤田塔山井田太原组5号煤的宏观煤岩类型、显微煤岩类型和地球化学参数,探讨了煤的煤岩学、煤地球化学及煤相特征,系统地分析了煤层的原始成煤泥炭沼泽环境及演化规律。研究结果表明,5号煤层有4种煤相类型,即湖沼相、泥炭沼泽相、潮湿森林沼泽相和较干燥森林沼泽相,相应表现为湖泊、障壁岛后潟湖、上三角洲平原和洪泛盆地含煤沉积体系特征。煤层自下而上存在5次比较明显的沉积旋回韵律,与之相随的水介质环境也发生了相应的海陆、咸水、淡水交替变化,从而形成了一套以陆相为主、海陆交互的成煤泥炭沼泽环境,沉积环境逐渐从海相、海陆过渡相向陆相演化。  相似文献   

15.
The methods of sequence analysis have been applied to the onshore Gippsland Basin and in particular to the Latrobe Valley Group coal measures which include up to five coal seams each exceeding 100 m in thickness. The methods appear to provide new depositional concepts to the evolution of these seams, and the development of coal lithotypes. In the eastern half of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifera and dinoflagellates. To the west (inland) these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages (Sluiter et al., 1995, this volume).Colorimeter and lithotype logging strongly supports an upwards lightening cyclicity to coal colour at 12–20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions (i.e. enhanced organic sulphur levels, warm climatic indicators and laterally equivalent marine clay splits) are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. The top of each major seam shows evidence of truncation (erosion?) on a regional scale and these surfaces are interpreted to represent the sequence boundaries. The major seams are usually conformably underlain by marine clays and extensive aquifer sands, being deposits of the late transgressive systems tracts. The low stands and early parts of the transgressive systems tracts appear not to be represented in the Latrobe Valley due to its (more) basin margin location, but are probably present down-dip in the equivalent marine facies of the Seaspray Group.Stratigraphic correlation of the sequence boundaries identified in the coal measures to the adjacent, internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al. (Exon Mesozoic-Cenozoic chronostratigraphic chart, version January 1988, and August 1989). From this dating it appears that each major seam is confined to high stands of third order eustatic cycles. It therefore follows that the lithotype cycles (parasequences) that comprise each seam are related to fourth order eustatic cycles. By analogy all the coal cycles may have developed under subtropical conditions as ombrogenous forested peat swamps in a similar manner to the Holocene, though tropical, swamps of Indonesia.  相似文献   

16.
重庆地区须家河组为一套砂岩、泥岩、砂质泥岩、粉砂岩和煤层组成的湖滨-三角洲型沉积,煤质分级主要为中灰(特低灰-高灰)、低硫(特低硫-中高硫)、高热值(低热值-特高热值)煤;灰分与硫分等值线分布较为相似,总趋势为北东-南西向展布,呈不规则条带状和团块状分布;原煤灰分值与发热量值呈负相关性,浮煤灰分值与发热量值呈正相关性,初步得出同一采集点原煤和浮煤的灰分与发热量的相关性正好相反,煤类分布与挥发分等值线展布相似的结论。  相似文献   

17.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

18.
Roof successions above two coal seams from the Mansfield Formation (Lower Pennsylvanian) in the Indiana portion of the Illinois Basin have been studied with regard to sedimentary structures, organic petrology and organic geochemistry. The succession above the Blue Creek Member of the Mansfield Formation is typical of the lithologies covering low-sulphur coals (< 1%) in the area studied, whereas the succession above the unnamed Mansfield coal is typical of high-sulphur coals (>2.%). The transgressive-regressive packages above both seams reflect the periodic inundation of coastal mires by tidal flats and creeks as inferred from bioturbation and sedimentary structures such as tidal rhythmites and clay-draped ripple bedforms. Geochemistry and petrology of organic facies above the Blue Creek coal suggest that tidal flats formed inland in fresh-water environments. These overlying fresh water sediments prevented saline waters from invading the peat, contributing to low-sulphur content in the coal. Above the unnamed coal, trace fossils and geochemical and petrological characteristics of organic facies suggest more unrestricted seaward depositional environment. The absence of saline or typically marine biomarkers above this coal is interpreted as evidence of very short periods of marine transgression, as there was not enough time for establishment of the precursor organisms for marine biomarkers. However, sufficient time passed to raise SO42− concentration in pore waters, resulting in the formation of authigenic pyrite and sulphur incorparation into organic matter.  相似文献   

19.
通过对蔚县煤田下花园组煤中植物残体——分散角质层、半丝炭化木材等研究,结合非煤层中植物化石和孢粉组合特征分析,认为泥炭沼泽植物群落主要由松柏类、银杏类、苏铁类和蕨类组成,它们都是本区成煤的重要物质来源。这种森林体系代表了一种温暖潮湿、雨量充沛的古气候条件。煤中丝炭及半丝炭化组分含量丰富是泥炭堆积速度快于盆地基底沉降速度,并最终导致泥炭沼泽覆水浅,泥炭层多处于相对干燥、氧化环境的表现。不同煤层中丝炭及半丝炭化组分含量的差异,为煤层对比提供了新的依据。  相似文献   

20.
二连盆地吉尔嘎朗图凹陷是一个陆相断陷聚煤盆地,下白垩统赛汉塔拉组是其主要含煤地层,作者利用岩心、钻孔资料对其岩相类型、沉积相、层序地层及聚煤作用特征进行研究。(1)赛汉塔拉组主要由砂砾岩、砂岩、粉砂岩、泥岩、碳质泥岩及厚层褐煤组成,发育扇三角洲平原相、扇三角洲前缘相、辫状河三角洲平原相、辫状河三角洲前缘相、滨浅湖相,分别属于扇三角洲沉积体系、辫状河三角洲沉积体系和湖泊沉积体系。(2)识别出2种层序界面:不整合面和下切谷冲刷面,将赛汉塔拉组划分为2个三级层序。从层序Ⅰ到层序Ⅱ,煤层厚度逐渐增大,聚煤作用逐渐增强。(3)在滨浅湖环境下厚煤层主要形成于湖侵体系域早期,在扇/辫状河三角洲环境下厚煤层主要形成于湖侵体系域晚期,煤层厚度在凹陷中部最大,向西北和东南方向均变小。聚煤作用明显受基底沉降作用影响,可容空间增加速率与泥炭堆积速率相平衡,从而形成了区内巨厚煤层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号