首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Enhanced demand for coal and minerals in the country has forced mine operators for mass production through large opencast mines. Heavy blasting and a large amount of explosive use have led to increased environmental problems, which may have potential harm and causes a disturbance. Ground vibrations generated due to blasting operations in mines and quarries are a very important environmental aspect. It is clear that a small amount of total explosive energy is being utilized in blasting for breakage of rock mass, while the rest is being wasted. The amount of energy which is wasted causes various environmental issues such as ground vibrations, air overpressure, and fly rock. Ground vibrations caused by blasting cannot be eliminated entirely, yet they can be minimized as far as possible through a suitable blasting methodology. A considerable amount of work has been done to identify ground vibrations and assess the blast performance regarding the intensity of ground vibrations, i.e., peak particle velocity and frequency spectrum. However, not much research has done into reducing the seismic energy wasted during blasting leading to ground vibrations. In this paper, the blast-induced ground vibrations in three orthogonal directions, i.e., transverse, vertical, and longitudinal, were recorded at different distances using seismographs. An attempt has been made for the estimation of the percentage of explosive energy dissipated in the form of seismic energy with electronic and non-electric (NONEL) initiation system. signal processing techniques with the help of DADiSP software is used to study the same.  相似文献   

2.
Environmental problems such as vibration and air blast are often faced and discussed in mining, quarrying, civil construction, shaft tunnel, pipeline, and dam operations, where blasting is inevitable. It is necessary to establish national standards in order to minimize environmental problems induced by blasting and judicial matters in our country as it is in the USA, European Union (EU) countries, and other developed countries. This necessity and the obligation of Turkey, which has started the procedure of joining the EU, to accept EU criteria emphasize the importance of this study. In other words, the establishment of a particular national standard related with this subject is inevitable for Turkey. This will be possible only by studying and applying scientific methods and techniques by experts. This paper presents a new damage criterion norm for blast-induced ground vibrations in Turkey. In this study, first, numerous vibration records were taken in blasting operations performed at different sites and rock units. For these rock units, particle velocity predictions and frequency analysis were done. At the same time, structures in the neighborhoods of these blasts were also observed and investigated. Finally, a damage criterion norm based on risk analysis was established and proposed by using these collected data. In light of the norm to be obtained from the data that were collected in the research, it will lead the excavation work in our country to be performed in such way that they are more effective and will cause minimum environmental problems.  相似文献   

3.
Vibrations due to production blasting can induce damage to the rock mass at large distances by altering larger geological structures, fault areas or other structures, where the orientation with respect to the mine geometry is unfavorable and can cause displacement of large rock volumes. Past occurrences of this nature in Escondida Mine placed geomechanical safety restrictions as to maximum allowable blast size in the northeast area of the mine. These restrictions limited the efficiency of drilling and blasting operations seriously limiting daily production. This is what prompted this study to attempt to increase shot size while reducing stability problems. This would permit keeping stable the slope over which the ore extraction belts are located, as well as the main access ramp to the mine. Using a rigorous and systematic instrumentation and monitoring effort of blasting vibrations at multiple locations with respect to an unstable location allowed the development of a database to establish acceptable vibrations limits. A parallel effort was the development and gauging of a mechanistic model for the prediction and simulation of blasting vibrations. Excellent results were obtained from a comparison between the measured and predicted results. This allowed the use of the gauged model to verify the practicality of increasing the shot size in the restricted blasting zones, without exceeding safe vibration limits. The practical success achieved using this research approach resulted in increased blasting size, with a consequent increase of blasted material per shot, and contributed to more flexible mining operations.  相似文献   

4.
Ground vibrations produced from blasting operations cause structural vibrations, which may weaken structure if it occurs at the resonant frequency. Measurable parameters associated with ground vibrations are peak particle velocity (PPV), amplitude and dominant frequency (frequency of highest PPV amongst translational, vertical and horizontal vibrations). In this paper, an attempt is made to correlate measurable parameters associated with ground vibrations with scaled distance. Using the correlated data, it was found that a predictor equation can be determined for the amplitude and PPV, but not for dominant frequency as it is dynamic and depends upon infinitesimal changes that occur within a number of other parameters. Another analysis of the same is made using multiple linear regression analysis. This included predicting the PPV using scaled distance, maximum charge per delay, amplitude as predictors. A considerable improvement is seen in the prediction on adding the interaction of the predictors in multiple regressions. A comparison of different combination of predictors is made so as to assess the best combination giving the best R2 value for the given mine. Frequency is also plotted using the aforementioned method. However, it was found that the dominant frequency cannot be predicted with high accuracy even with this method.  相似文献   

5.
Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model.  相似文献   

6.
The much increased use of explosives to move and extract rock masses in construction and mining over the past two decades has resulted in a plethora of complaints from the general public in areas of close proximity to public facilities, communication, and transportation systems. Air blasts and ground vibrations caused by explosive detonation can have desultory and damaging effects to public and private property, impose adverse effects on underground mining operations, and change the course of flow or effect the availability of surface and groundwater.Attempts to prevent damage and alleviate problems from blasting have been initiated by the federal and state governments by the promulgation of rules and regulations to prevent against vagrant and negligent blasting procedures. The Office of Surface Mining, Reclamation and Enforcement (OSMRE) provided regulations in the Federal Register on March 8, 1983, with particular reference to surface mining practices. Most of the states have adopted the OSMRE guidelines to enforce these rules and regulations.This article refers to surface mine blasting within the State of Alabama and describes some of the research efforts conducted by The University of Alabama, Department of Mineral Engineering, Tuscaloosa, Alabama, over the past several years. The article does not provide answers to the environmental problems caused by blasting but describes research activities in the past and present time frames. Although restricted to Alabama, the problem is worldwide.  相似文献   

7.
The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.  相似文献   

8.
M.K Seguin 《Geoforum》1974,5(2):55-67
A brief summary of our knowledge of permafrost is presented. The general properties and the thermal regime of permafrost encountered in the Schefferville area are discussed. The factors influencing the occurrence or disappearance of permafrost are discussed individually. Attempts to determine the mechanical and thermal properties of frozen rock materials, with the aim of relating these to geophysical results and to the various blasting responses appear to represent the best approach. In addition to the mapping of topography, drainage patterns, distribution and type of vegetation, snow cover and installation of thermistors, electrical resistivity surveys, borehole geophysical techniques and seismic refraction method are now recognized as important tools in predicting and outlining permafrost zones where blasting and handling procedures of iron ore are very expensive and difficult. Examples and results of such studies carried out on the Timmins 1, Timmins 4, and Fleming 3 deposits are presented. As the mining operations will move northwards into the Timmins, Barney, Goodwood, Leroy and Kivivic groups of deposits, an increasing percentage of the mining activities will be located in permafrost; consequently, it is of the utmost importance to develop a technique permitting a rapid and accurate prediction of permafrost zones in order to reduce prohibitive costs of operation. The delineation of permafrost in a particular deposit has many practical applications such as the demarcation of areas where trenching and test pitting is planned, prediction of ground conditions for test and tonnage drilling, delineation of areas of open cast walls which will be affected by permafrost and consecutive importance in slope design, operational planning of areas where free digging is possible during dirt (overburden) stripping and economic planning of mining operations, particularly with respect to drilling and blasting costs. Additional important applications include the delineation of areas of potential water problems during operations due to the presence of permafrost in the wall rocks and broad outline of the blasting patterns and choice of charge distributions to be used.  相似文献   

9.
This research was performed on the quarry that will be opened to produce aggregates and rock filling material at Catalagzi region at Zonguldak province in Turkey. However, there are some structures which can be adversely affected by blasting at the quarry. These structures are a methane exploration drill hole and a house at the distances of 340 and 390 m, respectively. One of the main goals of this study is to perform a preliminary assessment of possible damage effect of ground vibrations induced by blasting on these structures by risk analysis based on ground vibration measurements. In order to propose a preliminary blast design models separately for aggregate and rock filling material production, six test shots with different maximum charge per delay were planned and fired at the quarry. In these shots, 90 events were recorded. To predict peak particle velocity (PPV), the relationship between the recorded peak particle velocities and scaled distances were investigated. During this investigation, the data pairs were statistically analyzed and a PPV prediction equation specific to this site with 95% prediction line were obtained. And also, this equation was used in the derivation of the practical blasting charts specific to this site as a practical way of predicting the peak particle velocity and maximum charge per delay for future blasting. A risk analysis was performed by using this equation. In the light of this analysis, preliminary blast design models were proposed to be used in this quarry for aggregate and rock filling material production.  相似文献   

10.
The optimal delay time between the contour holes in rock blasting has been studied by theoretical and empirical research in Sweden, regarding ground vibrations, increase in crack frequency, radial crack length and finally overbreak (half cast factor). The model test presented in this paper concerns controlled contour blasting in tunnelling and the full-scale blasts concern tunnelling, road cutting, and dimensional stone quarrying. The results indicate that the microsequential contour blasting technique (contour holes fired in sequence and with a delay in the order of 1–2 ms) is superior to simultaneous initiation both regarding blast-induced ground vibrations and crack frequency increase in the rock mass. Both these evaluation methods reflects the conditions deeper in the remaining rock mass. Simultaneous initiation, however, is superior to micro-sequential contour blasting both regarding the half cast factor and the length of radial cracks emanating from the blastholes. These two parameters are more related to the surface conditions after blasting. The industrial applications of this new knowledge are the use of micro-sequential contour blasting when ground vibrations are of greater concern than the contour, for example, in trench blasting or quarrying in urban areas, and the use of simultaneous initiation when an even rock surface is of high priority.  相似文献   

11.
The safety and stability of concrete and masonry dams is a great concern when blasting has to be conducted close to these dams in order to construct small hydro-electric projects. There is a danger of ground vibration amplification to those residential-type buildings that are built close to these dams.

Responses of three concrete and masonry dams were measured directly by conducting a number of blasts and by monitoring vibration in the ground as well as on the dams. The amplitudes and frequencies of the motions were analysed and vibration attenuation relations were derived. These relations were used to compare the vibration levels on the dams with those in the ground.

Because of close-in construction blasts that produced high frequency ground vibrations, there was no amplification of the ground vibrations by these dams. The measured amplitudes of ground vibration were comparable to those of the dams.  相似文献   

12.
Drilling and blasting is a major technology in mining since it is necessary for the initial breakage of rock masses in mining. Only a fraction of the explosive energy is efficiently consumed in the actual breakage and displacement of the rock mass, and the rest of the energy is spent in undesirable effects, such as ground vibrations. The prediction of induced ground vibrations across a fractured rock mass is of great concern to rock engineers in assessing the stability of rock slopes in open pit mines. The waveform superposition method was used in the Gol-E-Gohar iron mine to simulate the production blast seismograms based upon the single-hole shot vibration measurements carried out at a distance of 39 m from the blast. The simulated production blast seismograms were then used as input to predict particle velocity time histories of blast vibrations in the mine wall using the universal distinct element code (UDEC). Simulated time histories of particle velocity showed a good agreement with the measured production blast time histories. Displacements and peak particle velocities were determined at various points of the engineered slope. The maximum displacement at the crest of the nearest bench in the X and Y directions was 26 mm, which is acceptable in regard to open pit slope stability.  相似文献   

13.
It is becoming increasingly important, from an environmental viewpoint, to minimize vibrations induced in urban dwellings by blasting. The present study illustrates how the delay interval between blastholes can be chosen to control and minimize the vibration energy within the structural response band of most houses. In particular, it is shown that the only possibility of reducing such energy is to employ a delay interval in the range 10–35 ms. However, the induced vibrations are also dependent upon the accuracy of the delay initiators as well as the level of random fluctuations between each blasthole signature. It is shown that only very accurate electronic delays give the possibility of utilizing fully the delay sequence in order to control structural vibrations. If the vibration emission from each blasthole is totally uncorrelated with that of any other blasthole then the resulting amplitude spectrum of the blast will be totally unpredictable. This situation occurs irrespective of the delay initiation sequence or its accuracy. Under these conditions it is impossible to predict the blast-induced energy lying within the structural response band.  相似文献   

14.
There is a common belief within the blasting community that increasing the burden will increase the blast vibration. In order to test this belief in a direct sense, it would be desirable to fire single blastholes with various burdens and monitor the vibrations at many locations. A review of past literature indicates that such direct tests are rare and only scant data is available. Nevertheless, a detailed analysis of this and associated past work (on small-scale blocks and choke blasts) shows no convincing evidence of an influence of burden on blast vibration. On the other hand, by considering the role of reflected waves in a simple analytical model, reasoning is given to show that the vibration might well be insensitive to burden. In view of the scant data available, it was decided to conduct trials of a direct nature, in which 13 single blastholes were fired to a free face. The burdens chosen were 2.6 m, 5.2 m and 10.4 m, and the vibration was measured at typically 10 locations over the range 5 m to 50 m from each hole. The results clearly show that the vibration is independent of such burdens. Furthermore, a side-by-side comparison of a choke blast with a free-face blast showed that the vibration from the holes in the choke blast was not higher than the vibration from the holes in the free-face blast. The present work also shows that vibration, although insensitive to burden, is not insensitive to the condition (i.e., the degree of damage) of the surrounding rock mass. In this regard, blastholes in undamaged ground produce a significantly higher vibration than blastholes in damaged ground. This might well be the reason why pre splits and drop-cuts are observed to produce relatively high vibrations, i.e., it is not because such blasts typically involve large burdens, but rather that they are usually initiated in relatively undamaged ground.  相似文献   

15.
The purpose of blasting operations is rock fragmentation. Blasting is a key component in the overall rock fragmentation system - the first element of the ore extraction process. It provides appropriate rock material granulation or size that is suitable for loading and transportation. However, in spite of many advantages explosives have, their usage may cause environmental problem such as seismic vibration. One of the solutions to this particular problem may be application of an artificial screen as a barrier to the seismic wave path. The results of experimental research on the artificial screen concept, its characteristics and role in attenuation of seismic effects generated by blasting are presented. The experiment is based on two physical phenomena: (1) the size and degree of discontinuity and (2) the reflection and refraction of seismic waves. More than 1,500 laboratory measurements were conducted with different combinations of screen sizes, positions of the screen to blasting source, and intensities of blasting impulses. The results of the study show reduction of generated vibrations up to 58% by employment of artificial screens.  相似文献   

16.
隧道近距下穿山坡楼房爆破振动测试研究   总被引:3,自引:0,他引:3  
管晓明  傅洪贤  王梦恕 《岩土力学》2014,35(7):1995-2003
以成渝客运专线新红岩隧道为工程背景,测试了隧道近距下穿山坡楼房爆破时引起的地面振动。通过对隧道浅埋侧(隧道地表斜坡下部)和深埋侧(隧道地表斜坡上部)的地表振动数据分析,研究了地表的振动速度、振动主频及振动安全评价方法。结果表明:在浅埋隧道爆破的近区,入射纵波为主要载体,地表水平和竖直方向振动的主要成分可以认为是入射纵波在水平和竖直方向的投影,浅埋侧和深埋侧地表水平和竖直方向振速的大小取决于爆心距和入射纵波与竖直方向的夹角两个因素;隧道采用电子雷管进行单孔连续起爆,相比非电雷管爆破,可以有效降低地表振动强度,同时能够提高地表振动主频;地表振动主频方面,地表竖直方向振动主频普遍高于水平方向,而且浅埋侧地表竖直和水平方向主频大多高于深埋侧地表对应方向的主频;隧道近距下穿山坡楼房进行爆破施工时,建议在浅埋侧和深埋侧地表同时布置爆破振动监测测点,并根据浅埋侧和深埋侧地表测点的峰值振速、爆破振动主频与建筑物固有频率的关系对地表振动安全进行评价,以减少隧道施工爆破对地表环境和周围建筑物造成的振动破坏。  相似文献   

17.
This study evaluates the impacts resulting from quarry-blasting operation on nearby buildings and structures as it generates ground vibration, air blast, and fly rocks. In this paper, first blasting operation and its possible environmental effects are defined. Then the methods of blast-vibration prediction and commonly accepted criteria to prevent damage were introduced. A field experimental work was conducted to minimize the vibration effects at Saribayir quarry as it is an identical case for the many quarries situated in and around Istanbul, Turkey. Although the local surrounding geology and rock mechanics have great influence on vibrations as uncontrollable parameter, the charge weight per delay, delay period, geometric parameters of the blasts were changed to solve the existing vibration problem in the studied quarry. To obtain a realistic result, 10 blasts were carried out and 30 seismic records were made in different places mainly very close the buildings and the other vulnerable structures around the quarry. The evaluation is performed whether the vibration level are within safe limits or not. The prediction equation based on scaled distance concept is also determined, however, it is a site-specific model and need to be updated when the quarry advances. The safe blast parameters which minimize the environmental effect were determined for the Saribayir quarry.  相似文献   

18.
This paper presents the influence of various discontinuities, natural or artificial, on magnitude and frequencies of blast induced ground vibrations. These discontinuities were geological faults, a pond, a shaft incline, a trench and a pre-split plane interposed in the path of vibration propagation. In the post-trench region, ground vibrations in terms of peak particle velocity were significantly reduced and dominant frequencies in higher bands were consequently observed. Depth of trench with respect to blastholes were varied and consequent vibration characteristics were analyzed. The techniques of creating a trench and pre-split plane were successfully implemented in controlling vibration and in increasing the explosives charge to meet the scheduled production target of an opencast mine. Comparisons of ground vibration characteristics affected by a trench and a pre-split plane of the same depth are described in the text. The findings lead to the conclusion that such experimental data are necessary for production blasting in open cast mines under constrained conditions.  相似文献   

19.
Checking the quality of a blast may be considered as subjective. Checking this quality will require measuring objective parameters. One of them is the resulting fragmentation of the blasted product. Numerous fragmentation 'measuring' systems have been developed and marketed, based on image-processing. This presentation of FragScan will illustrate advantages and difficulties when using such a system. FragScan is essentially defending a policy of large and representative sampling. The purpose is to show how fragmentation is discriminating both productivity and profit of quarry operations on a blast-by blast basis. The next step will then be to 'drive' the blasting process to reach a 'better' fragmentation. Other applications require the fragmentation as an essential result: this is the case for large boulders used in structure-reinforcement. Several case-studies have shown that FragScan can be used for quality-control, checking size-distribution of the product according to the requirements of the end-user. Only clear thinking about the precise use of such a 'measurement' will further the success of this task.  相似文献   

20.
Environmental impact of blasting at Drenovac limestone quarry (Serbia)   总被引:1,自引:1,他引:0  
In present paper, the blast-induced ground motion and its effect on the neighboring structures are analyzed at the limestone quarry "Drenovac" in central part of Serbia. Ground motion is examined by means of existing conventional predictors, with scaled distance as a main influential parameter, which gave satisfying prediction accuracy (R > 0.8), except in the case of Ambraseys–Hendron predictor. In the next step of the analysis, a feed-forward three-layer back-propagation neural network is developed, with three input units (total charge, maximum charge per delay and distance from explosive charge to monitoring point) and only one output unit (peak particle velocity). The network is tested for the cases with different number of hidden nodes. The obtained results indicate that the model with six hidden nodes gives reasonable predictive precision (R ≈ 0.9), but with much lower values of mean-squared error in comparison to conventional predictors. In order to predict the influence level to the neighboring buildings, recorded peak particle velocities and frequency values were evaluated according to United States Bureau of Mines, USSR standard, German DIN4150, Australian standard, Indian DMGS circular 7 and Chinese safety regulations for blasting. Using the best conventional predictor, the relationship between the allowable amount of explosive and distance from explosive charge is determined for every vibration standard. Furthermore, the effect of air-blast overpressure is analyzed according to domestic regulations, with construction of a blasting chart for the permissible amount of explosive as a function of distance, for the allowable value of air-blast overpressure (200 Pa). The performed analysis indicates only small number of recordings above the upper allowable limit according to DIN4150 and DMGS standard, while, for all other vibration codes the registered values of ground velocity are within the permissible limits. As for the air-blast overpressure, no damage is expected to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号