首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical inversion program has been developed to investigate isotope and trace element variations in suites of related rocks in terms of assimilation and fractional crystallisation processes. Major element compositions constrain the degree of fractionation, and the program may be used to calculate the isotope and trace element composition of either the crustal contaminant, or of the parental magmas once the contaminant is known. The ratio of the rate of assimilation to the rate of fractional crystallisation, and the bulk partition coefficients, can be varied with changes in magma composition. The approach is illustrated with a suite of calc-alkaline rocks from the Cerro Galan centre in NW Argentina, and a suite of continental flood basalts from the southern Paraná in Brazil. Both exhibit striking increases in 87Sr/86Sr with increasing SiO2 consistent with progressive contamination during differentiation within the continental crust. In detail, both suites contain a subset of samples which have undergone relatively little contamination, and a subset characterised by relatively high SiO2 and 87Sr/86Sr reflecting larger crustal contributions. Individual samples within the more contaminated subset can be modelled in terms of assimilation with fractional crystallisation (AFC) processes, although no clear progressively contaminated liquid lines of descent are preserved. At both Cerro Galan and the southern Paraná, the associated dacites and rhyodacites appear to have similar compositions to the crustal contaminants. Thus the inversion program has been used to investigate the amount of contamination, the relationship between the amount of contamination and the amount of crystals removed by fractional crystallisation, and the isotope and trace element contents of the parental magmas prior to AFC. The latter are estimated to have had 87Sr/86Sr=0.7055 and 143Nd/144Nd=0.51256 at Cerro Galan, and 0.7090 and 0.51226 respectively in the southern Paraná.  相似文献   

2.
Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey   总被引:1,自引:1,他引:0  
Post-collision magmatic rocks are common in the southern portion of the Marmara region (Kap?da?, Karabiga, Gönen, Yenice, Çan areas) and also on the small islands (Marmara, Av?a, Pa?aliman?) in the Sea of Marmara. They are represented mainly by granitic plutons, stocks and sills within Triassic basement rocks. The granitoids have ages between Late Cretaceous and Miocene, but mainly belong to two groups: Eocene in the north and Miocene in the south. The Miocene granitoids have associated volcanic rocks; the Eocene granitoids do not display such associations. They are both granodioritic and granitic in composition, and are metaluminous, calc-alkaline, medium to high-K rocks. Their trace elements patterns are similar to both volcanic-arc and calc-alkaline post-collision intrusions, and the granitoids plot into the volcanic arc granite (VAG) and collision related granite areas (COLG) of discrimination diagrams. The have high 87Sr/86Sr (0.704–0.707) and low 143Nd/144Nd (0.5124–0.5128). During their evolution, the magma was affected by crustal assimilation and fractional crystallization (AFC). Nd and Sr isotopic compositions support an origin of derivation by combined continental crustal AFC from a basaltic parent magma. A slab breakoff model is consistent with the evolution of South Marmara Sea granitoids.  相似文献   

3.
The Abbott Unit (∼508 Ma) and the Vegetation Unit (∼475 Ma) of the Terra Nova Intrusive Complex (northern Victoria Land, Antarctica) represent the latest magmatic events related to the Early Paleozoic Ross Orogeny. They show different emplacement styles and depths, ranging from forcible at 0.4–0.5 GPa for the Abbott Unit to passive at ∼0.2 GPa for the Vegetation Unit. Both units consist of mafic, felsic and intermediate facies which collectively define continuous chemical trends. The most mafic rocks from both units show different enrichment in trace element and Sr-Nd isotopic signatures. Once the possible effects of upper crustal assimilation-fractional crystallisation (AFC) and lower crustal coupled AFC and magma refilling processes have been taken into account the following features are recognised: (1) the modelled primary Abbott Unit magma shows a slightly enriched incompatible element distribution, similar to common continental arc basalts and (2) the modelled primary Vegetation Unit magma displays highly enriched isotope ratios and incompatible element patterns. We interpreted these major changes in magmatic affinity and emplacement style as linked to a major change in the tectonic setting affecting melt generation, rise and emplacement of the magmas. The Abbott Unit mafic melts were derived from a mantle wedge above a subduction zone, with subcontinental lithospheric mantle marginally involved in the melting column. The Vegetation Unit mafic melts are regarded as products of a different source involving an old layer of subcontinental lithospheric mantle. The crustal evolution of both types of mafic melts is marked by significant compositional contrasts in Sr and Nd isotopes between mafic and associated felsic rocks. The crustal isotope signature showed an increase with felsic character. Geochemical variations for both units can be accounted for by a similar two-stage hybridisation process. In the first stage, the most mafic magma evolved mainly by fractional crystallisation coupled with assimilation of metasedimentary rocks having crustal time-integrated Sr and Nd compositions similar to those of locally exposed metamorphic basement. The second stage involves contaminated products mixing with independently generated crustal melts. Petrographic, geochemical and isotope data also provide evidence of significant compositional differences in the felsic end-members, pointing to the involvement of metaigneous and metasedimentary source rocks for the Abbott granite and Vegetation leucogranite, respectively. Received: 31 March 1998 / Accepted: 3 May 1999  相似文献   

4.
The isotopic compositions of Nd and Sr and concentrations of major and trace elements were measured in flows and tuffs of the Woods Mountains volcanic center of eastern California to assess the relative roles of mantle versus crustal magma sources and of fractional crystallization in the evolution of silicic magmatic systems. This site was chosen because the contrast in isotopic composition between Precambrian-to-Mesozoic country rocks and the underlying mantle make the isotope ratios sensitive indicators of the proportions of crustal- and mantle-derived magma. The major eruptive unit is the Wild Horse Mesa tuff (15.8 m.y. old), a compositionally zoned rhyolite ignimbrite. Trachyte pumice fragments in the ash-flow deposits provide information on intermediate composition magma types. Crustal xenoliths and younger flows of basalt and andesite (10 m.y. old) provide opportunities to confirm the isotopic compositions of potential mantle and crustal magma sources inferred from regional patterns. The trachyte and rhyolite have Nd values of -6.2 to -7.5 and initial 87Sr/86Sr ratios mostly between 0.7086 and 0.7113. These magmas cannot have been melted directly from the continental basement because the Nd values are too high. They also cannot have formed by closed system fractional crystallization of basalt because the 87Sr/86Sr ratios are higher than likely values for parental basalt. Both major and trace element variations indicate that crystal fractionation was an important process. These results require that the silicic magmas are end products of the evolution of mantle-derived basalt that underwent extensive fractional crystallization accompanied by assimilation of crustal rock. The mass fraction of crustal components in the trachyte and rhyolite is estimated to be between 10% and 40%, with the lower end of the range considered more likely. The generation of magmas with SiO2 contents greater than 60% appears to be dominated by crystal fractionation with minimal assimilation of upper crustal rocks.  相似文献   

5.
Assimilation of crustal rocks with concomitant fractional crystallisation (AFC) is a well documented phenomenon in many igneous suites, but geochemical evidence from the Tertiary Mull lava succession suggests that in these magmas crustal contamination occurred by a distinctly different mechanism. Lavas from the lower half of the Mull Plateau group (MPG) can be divided into two broad sub-types; high (>8%) MgO basalts with elevated Ba and K; and lower MgO (<8%) basaltic-hawaiites with lower Ba and K. The lower crust and most of the upper crust beneath Mull is probably of Lewisian age. The Sr-, Nd-and Pb-isotope compositions of local Lewisian crustal samples yield the following ranges: 87Sr/86Sr=0.71002–0.72348, 143Nd/144Nd=0.51045–0.51058 and 206Pb/204Pb=14.0–14.6. Ten lavas have also been analysed and yield the following ranges: 87Sr/86Sr=0.7028–0.7042, 143Nd/144Nd=0.51214–0.51230 and 206Pb/204Pb=15.1–17.9. However, within this range, it is predominantly the more primitive mafic compositions, with elevated Mg, Ba and K, that show the lowest Nd- and Pb-, and the highest Sr-isotope values. Modelling of these isotopic results, in conjunction with major and trace element data, show that: (1) contamination by Lewisian lower crustal material does occur; (2) that the process involved was not one of assimilation with concomitant fractional crystallisation (AFC). The proposed contamination process is one whereby the hottest (most MgO rich) magmas have assimilated acidic partial melts of Lewisian lower crust during turbulent ascent (ATA) through thin, poorly connected dyke- and sill-like magma chambers. The chemical composition of the contaminated lavas can be modelled successfully through addition of 5% acidic Lewisian crust to an uncontaminated lava. In contrast, the more evolved magmas — which probably fractionated at sub-crustal levels — were either not hot enough to molt significant amounts of crust, or did not ascend turbulently because of their higher viscosity, and so are less contaminated with crust.  相似文献   

6.
A development of De Paolo's mathematical procedure (1981) for magmatic AFC (Assimilation-Fractional Crystallization) processes is discussed with respect to both trace element and Sr isotopic ratio behaviours during the genesis and evolution of Adamello batholith (northern Italy). Resolution of a two equation-system (one relative to 87Sr/86Sr ratio variation in a magma generated by an AFC process, the other to its trace element content variations) gives the F (mass of magma at time t/mass of initial magma) and D (bulk partition coefficient) values, by which one can deduce the r (rate of assimilation/rate of crystallization) value during each step of magmatic evolution. This quantitative approach suggests that: 1) there was a common precursor magma for all the Adamello granitoids, with a Mg-rich tholeiitic composition; 2) each intrusive unit appears to have been generated by different extents of AFC; 3) the trace element distribution in the magma seems essentially influenced by mineral fractionation, rather than by the composition of the assimilated crustal material.  相似文献   

7.
Major and trace element and 143Nd/144Nd (0.51209–0.51216) and 87Sr/86Sr (0.70879–0.71105) isotope analyses are presented on a representative group of lavas from the Vulsini district of the Roman magmatic province. Three distinct series are identified; the high-K and low-K series are similar to those described from other Italian volcanoes, while the third is represented by a group of relative ly undifferentiated leucite basanites which are thought to be near-primary mantle melts. Major and trace element variations within the high-K series are consistent with fractional crystallisation from a parental magma similar to the most magnesian leucitites. Crustal contamination resulted in an increase in 87Sr/86Sr with increasing fractionation, but it was superimposed on magmas which had already inherited a range of incompatible element and isotope ratios from enrichment processes in the sub-continental mantle. These are reviewed using the available results from Vulsini, Roccamonfina and Ernici. Transition element abundances and Ta/Yb ratios indicate that the pre-enrichment mantle was similar to that of E-type MORB, and that these elements were not mobilised by the enrichment process. Mixing calculations suggest that three components were involved in the enrichment process; mantle comparable with the source of MORB, and two other components rich in trace elements. One, the low-K component, had high Sr/Nd, Th/Ta and Ba/Nb and no europium anomaly while the second had lower Sr/Nd, a negative europium anomaly and very high Th/Ta. It was also characterised by low Nb/Ba and high Rb/Ba ratios, similar to those reported from phlogopite-rich peridotite xenoliths. The trace element enrichment processes are therefore thought to have occurred in the mantle wedge above a subduction zone with the trace element characteristics of the high-K end-member reflecting the subduction of sediments and the stabilisation of mantle phlogopite.  相似文献   

8.
Late Jurassic dioritic plutons from the Bristol Lake region of the eastern Mojave Desert share several geochemical attributes with high-alumina basalts, continental hawaiite basalts, and high-K are andesites including: high K2O concentrations; high Al2O3 (16–19 weight %); elevated Zr/TiO2; LREE (light-rare-earth-element) enrichment (La/YbCN=6.3–13.3); and high Nb. Pearce element ratio analysis supported by petrographic relations demonstrates that P, Hf, and Zr were conserved during differentiation. Abundances of conserved elements suggest that dioritic plutons from neighboring ranges were derived from similar parental melts. In the most voluminous suite, correlated variations in elemental concentrations and (87Sr/86Sr)i indicate differentiation by fractional crystallization of hornblende and plagioclase combined with assimilation of a component characterized by abundant radiogenic Sr. Levenberg-Marquardt and Monte Carlo techniques were used to obtain optimal solutions to non-linear inverse models for fractional crystallization-assimilation processes. Results show that the assimilated material was chemically analogous to lower crustal mafic granulites and that the mass ratio of contaminant to parental magma was on the order of 0.1. Lack of enrichment in 18O with differentiation is consistent with the model results. Elemental concentrations and O, Sr, and Nd isotopic data point to a hydrous REE-enriched subcontinental lithospheric source similar to that which produced some Cenozoic continental hawaiites from the southern Cordillera. Isotopic compositions of associated granitoids suggest that partial melting of this subcontinental lithosphere may have been an important process in the development of the Late Jurassic plutonic arc of the eastern Mojave Desert.  相似文献   

9.
The major, trace (including rare earth) element abundances, and Sr-Nd-Pb isotopic compositions, have been analysed for andesitic basalt and andesitic sills and lavas of the Jurassic Ferrar Magmatic Province, Prince Albert Mountains, Antarctica. The typical “crustal signature” of the Ferrar magmatism, characterized by relatively high SiO2, LREE and LILE contents in these samples, is associated with high 87Sr/86Sr and low 143Nd/144Nd. Systematic correlations of major and trace elements indicate that fractional crystallization was important. However, increases in incompatible elements are positively correlated with initial 87Sr/86Sr, suggestive of crustal assimilation processes. The observed correlations between initial 87Sr/86Sr and LREE enrichments have been modelled by an AFC process, starting from the least evolved sample and assuming the compositions of the orthogranulites of Victoria Land as contaminants. The REE patterns of the least evolved Ferrar rocks approach those of E-type MORB, differing only by higher LREE/IREE. The enrichment in LREE, accompanying high initial 87Sr/86Sr, 207Pb/204Pb and low 143Nd/144Nd compared with E-type MORB, can be explained by interaction of “primary Ferrar basalt” with crystalline basement. We propose a petrological model whereby Ferrar magmas were generated through high degrees of melting of an E-type MORB mantle source, and subsequently these “primary” melts underwent AFC processes inheriting a crustal signature. The Sr-Nd-Pb isotopic compositions required by the AFC model for the primary Ferrar basalt are similar to those of the Dupal signature of the oceanic basalts of the Southern Hemisphere (Hart 1984). Transantarctic Mountains would have been located inside the Dupal anomaly in pre-Gondwana dispersion times. Received: 21 April 1998 / Accepted: 25 January 1999  相似文献   

10.
Subduction related basalts display wide ranges in large ion lithophile element ratios (e.g., Rb/Ba and Rb/ Sr) which are unlikely to result from mixing, but suggest a role for small degree partial melting of a relatively Rb-poor mantle wedge source. However, these variations do not correlate with other trace element criteria, such as the depletions of high field strength elements (HFSE) and light rare earth elements (LREE) relative to the LILE, which characterise subduction related magmatism. Integration of radiogenic isotope and trace element data demonstrates that the elemental enrichment cannot be simply related to two component mixtures inferred from isotopic variations. Thus a minimum of three components is required to describe the geochemistry of subduction zone basalts. Two are subduction related: high Sr/Nd material is derived from the dehydration of subducted basaltic ocean crust, and a low Sr/Nd component is thought to be from subducted terrigenous sediment. The third component is in the mantle wedge, it is usually similar to the source of MORB, particularly in its isotopic composition. However, in some cases, notably continental areas, more enriched mantle wedge material with relatively high 87Sr/86Sr, low 143Nd/144Nd and elevated incompatible trace element contents may be involved Mixing of these three components is capable of producing both the entire range of Sr, Nd and Pb isotope signatures observed in destructive margin basalts, and their distinctive trace element compositions. The isotope differences between Atlantic and Pacific island arc basalts are attributed to the isotope compositions of sediments in the two oceans.  相似文献   

11.
The post-Variscan complex of Porto consists of metaluminous to slightly peraluminous A-type biotite granites mingled with gabbro-dioritic rocks, and late dykes with basaltic to trachyandesitic composition. U-Pb zircon dating by LA-ICP-MS on two mafic intrusive samples constrains the time of the gabbro–granite crystallisation at 281 ± 3 Ma and 283 ± 2 Ma. Hornblende 40Ar-39Ar ages from a late trachyandesite dyke date the dyking event at 280 ± 2 Ma, which is within error the U-Pb zircon ages of the intrusives. Biotite granites show variable major and trace element compositions and similar initial εNd (−0.3 to +0.9). Whole rock chemistry variations and trace element compositions of plagioclase and allanite indicate that the granites are genetically linked, essentially through fractional crystallisation of feldspars and minor allanite. On the basis of whole-rock chemistry e.g. initial εNd +4.9 to +1.7 and trace element clinopyroxene compositions, we have ascertained that the mafic intrusives and basic dykes formed from isotopically depleted mantle source-derived melts with similar trace element signature. These basic melts experienced slightly different evolutionary histories, controlled by fractional crystallisation and crustal contamination, mainly by the acid magma that gave rise to the associated biotite granites, but also by the enclosing older Variscan granitoids. U-Pb zircon data suggest that the Porto complex was affected by hydrothermal fluid circulation at 259 ± 9 Ma.  相似文献   

12.
The Central Anatolian Volcanic Province (CAVP), one of four major volcanic provinces in Turkey, plays a significant role in the interpretation of the tectonic evolution of Central Anatolia. The CAVP developed within a complex collisional system involving the African, Arabian and Eurasian plates during the Miocene. The volcanism exhibits complicated variations in mineralogical, petrological and geochemical compositions resulting from post-collisional lithospheric dynamics. The Incesu ignimbrite has 5–20 m thick and covers an area of ~7800 km2. It is composed of three stratigraphic levels. The lower level (LL) shows blackish brown and glassy welded structure. The middle level (ML) is a well-welded, reddish pink in color and has large amounts of fiamme. The upper level (UL) is grayish pink, weakly welded and has rock fragments of different compositions. The Incesu ignimbrite is composed of plagioclase (oligoclase, andesine) + pyroxene (augite, clinoenstatite) + opaque minerals and low amount of amphibole, biotite and quartz. Eutaxitic texture is dominant in ML and LL samples; these levels are more strongly and contain more flattened pumice fragments and volcanic glass shards than in the UL. A sharp color contrast defines the contact between LL and ML.Major, trace and rare earth element of the Incesu ignimbrite, characterized by their rhyolite, rhyodacite–dacite composition, medium–high K, calcalkaline and peraluminous nature, show fractional crystallization primarily controlled by plagioclase, clinopyroxene, magnetite, ilmenite and titanomagnetite. Sr and Nd isotopic ratios of Incesu ignimbrite display isotopic variations between the ignimbrite levels; they exhibit a limited range in 87Sr/86Sr (0.7043–0.7049) and 143Nd/144Nd (0.512716–0.512760). The Sr–Nd isotopic ratio of Incesu ignimbrite reveals an age of 3 Ma. The ignimbrite evolved through fractional crystallization and crystal contamination of the parent magma derived from Ocean Island Basalt (OIB) like magma. This suggestion is supported by the AFC modeling based on the trace elements and Sr isotope data.Variation of several major oxide concentrations (Fe2O3, TiO2, CaO and K2O), trace element concetrations (V, Sr, Cs and Rb) and trace element ratios (Ba/Rb, Sr/, K/Sr, K/Nb, Rb/Sr, Rb/Y and Rb/Nb) versus SiO2 concentration show the magma chamber that generated the Incesu ignimbrite was compositionally zoned. All geochemical and Sr–Nd isotpic datas can be interepreted to be the result of a subduction related source.  相似文献   

13.
Early Eocene to Early Miocene magmatic activity in northwestern Anatolia led to the emplacement of a number of granitoid plutons with convergent margin geochemical signatures. Granitoid plutons in the area are mainly distributed within and north of the suture zone formed after the collision of the Anatolide-Tauride platform with the Pontide belt. We present geochemical characteristics of three intrusive bodies in the region in order to identify their source characteristics and geodynamic significance. Among these, the Çataldağ and Ilıca-Şamlı plutons are located to the north and the Orhaneli pluton is located to the south of the IAESZ (Izmir-Ankara-Erzincan Suture Zone). The plutons are calc-alkaline, metaluminous, and I-type with compositions from granite to monzonite. They display clear enrichments in LILE and LREE and depletions in HFSE relative to N-MORB compositions and have high 87Sr/86Sr and low 143Nd/144Nd ratios.The results of theoretical Fractional Crystallization (FC) model show that the samples are affected by fractionation of K-feldspar, plagioclase, biotite and amphibole. Assimilation and Fractional Crystallization (AFC) modeling indicates that the r value, the proportion of variable contamination to fraction, is high, indicating significant crustal contamination in the genesis of granitoid magmas. Combined evaluation of isotopic and trace element data indicates that the granitoids are the products of mantle-derived mafic magmas variably differentiated by simultaneous crustal contamination and fractional crystallization in lower to middle crustal magma chambers in a post-collisional setting.  相似文献   

14.
The problem of mantle metasomatism vs. crustal contamination in the genesis of arc magmas with different potassium contents has been investigated using new trace element and Sr–Nd–Pb isotopic data on the island of Vulcano, Aeolian arc. The analysed rocks range in age from 120 ka to the present day, and cover a compositional range from basalt to rhyolite of the high-K calc-alkaline (HKCA) to shoshonitic (SHO) and potassic (KS) series. Older Vulcano products (>30 ka) consist of HKCA–SHO rocks with SiO2=48–56%. They show lower contents of K2O, Rb and of several other incompatible trace element abundances and ratios than younger rocks with comparable degree of evolution. 87Sr/86Sr ranges from 0.70417 to 0.70504 and increases with decreasing MgO and compatible element contents. 206Pb/204Pb ratios display significant variations (19.31 to 19.76) and are positively correlated with MgO, 143Nd/144Nd (0.512532–0.512768), 207Pb/204Pb (15.66–15.71) and 208Pb/204Pb (39.21–39.49). Overall, geochemical and isotopic data suggest that the evolution of the older series was dominated by assimilation–fractional crystallisation (AFC) with an important role for continuous mixing with mafic liquids. Magmas erupted within the last 30 ka consist mostly of SHO and KS intermediate and acid rocks, with minor mafic products. Except for a few acid rocks, they display moderate isotopic variations (e.g. 87Sr/86Sr=0.70457–0.70484; 206Pb/204Pb=19.28–19.55, but 207Pb/204Pb=15.66–15.82), which suggest an evolution by fractional crystallisation, or in some cases by mixing, with little interaction with crustal material. The higher Sr isotopic ratios (87Sr/86Sr=0.70494–0.70587) of a few, low-volume, intermediate to acid rocks support differentiation by AFC at shallow depths for some magma batches. New radiogenic isotope data on the Aeolian islands of Alicudi and Stromboli, as well as new data for lamproites from central Italy, are also reported in order to discuss along-arc compositional variations and to evaluate the role of mantle metasomatism. Geochemical and petrological data demonstrate that the younger K-rich mafic magmas from Vulcano cannot be related to the older HKCA and SHO ones by intra-crustal evolutionary processes and point to a derivation from different mantle sources. The data from Alicudi and Stromboli suggest that, even though interaction between magma and wall rocks of the Calabrian basement during shallow level magma evolution was an important process locally, a similar interpretation can be extended to the entire Aeolian arc. Received: 27 September 1999 / Accepted: 24 May 2000  相似文献   

15.
ABSTRACT

Eocene intermediate to felsic plutons of different sizes and compositions are widespread in the Eastern Pontides Orogenic Belt in northern Turkey. Of these, the Ta?l?k Tepe pluton in the Havza (Samsun) area is fine-to-medium-grained, with granular, porphyritic, and micrographic textures, and include mafic microgranular enclaves (MMEs). LA-ICP-MS U-Pb zircon dating yielded emplacement ages of 42.9 (± 1.4) and 40.5 (± 1.3) Ma for the host granodioritic pluton and the dioritic MMEs, respectively. Petrochemically, the host pluton has I-type, high-K calc-alkaline, and metaluminous-to-slightly peraluminous features (A/CNK = 0.95–1.06). The host pluton also shows geochemical features of adakite-like rocks with high SiO2 (67–68 wt%) and Al2O3 (15.5–16.0 wt%) content and Ba/La (17–23), Sr/Y (40.7–61.6), and LaN/YbN (14.4–23.7) ratios and low Y (8.2–9.9 ppm) and YbN (3.1–4.4) contents. Whole-rock major and trace element variations suggest that fractional crystallisation played a significant role in the pluton evolution. The N-MORB normalised trace element patterns of the pluton are similar to those of MMEs with enrichment in large-ion lithophile elements, Th and Ce, and negative Nb and Ti anomalies. Chondrite-normalised rare earth element plots show moderate-to-highly enriched concave patterns (LaN/LuN = 14.2–21.6) with insignificant negative Eu anomalies (EuN/Eu* = 0.86–1.14), all of which imply hornblende fractionation during magmatic evolution. The pluton samples have 87Sr/86Sr ratios of 0.704767 to 0.704927, 143Nd/144Nd ratios of 0.512767–0.512774, εNd values of (+2.52) – (+2.65), and δ18O values of 7.9–9.7‰. The isotopic compositions of the host pluton and MMEs are similar to I-type granitoids derived from mantle sources. The MMEs show incomplete magma mixing/mingling, representing small bodies of mafic parental magma. Combined with regional studies, these new data suggest that the parental magma of the studied adakite-like pluton was generated from the lithospheric mantle and then modified by fractional crystallisation and assimilation in a post-collisional setting.  相似文献   

16.
The petrogenesis of Abu Khruq, an 89 Ma alkaline ring complex of eastern Egypt which is composed of alkali gabbros and both silica over- and undersaturated syenites, has been investigated. Major and trace element relationships and Nd and Sr isotope data are consistent with formation of the gabbros from an alkaline mafic magma that experienced extensive fractionation, and all syenites from a felsic derivative of this melt. The parental magma had an 87Sr/86Sr of 0.7030 and an 143Nd/144Nd of 0.512750 (Nd = +4.4) indicating derivation from a depeleted mantle source. The initial 143Nd/144Nd ratios are: 0.512721 to 0.512748 for the gabbros, 0.512739 to 0.512750 for the alkali syenites and trachytes, 0.512717 to 0.512755 for the nepheline syenites, and, 0.512706 to 0.512732 for the quartz syenites. In contrast, analyzed Precambrian granites from eastern Egypt have generally lower 143Nd/144Nd ratios (ranging from 0.51247 to 0.51261 or Nd = -0.8 to 1.7, for 89Ma); their Nd model ages range from 775 to 935 Ma and suggest there was no significant input of pre-Pan-African crust in their formation. Among Abu Khruq rocks, 143Nd/144Nd ratios indicate that the quartz syenites formed by open-system, crustal contamination processes whereas the nepheline syenites experienced little or no contamination. Modeling shows that contamination occurred at various stages, affecting both mafic and more evolved compositions with input of about 20% crustal Nd for the most contaminated samples. The degree of contamination is related to the silica saturation of the quartz syenites. Simplified modeling of magma evolution within Petrogeny's Residua System demonstrates the ability of AFC processes to cause a critically undersaturated magma to evolve across the feldspar join and produce oversaturated rocks. The oversaturated syenites at Abu Khruq were produced in this manner whereas the nepheline syenites formed by fractionation without similarly large degrees of contamination. The results have broad implications for the formation of subvolcanic complexes in continental settings beyond the important production of silica oversaturated compositions from crustal interaction. They underscore the importance of crustal interactions in the formation of the various lithologies. Such interactions occur at various stages in the evolution of the magmas and, as such, are not strictly coupled with fractional crystallization. While previous study of Abu Khruq has demonstrated extensive hydrothermal alteration of O and Sr isotopes, the present work shows that the Nd isotope ratios were not significantly affected and thus reflect magmatic signatures. This feature combined with relatively small corrections for initial ratios emphasizes the utility of Nd isotopes for petrogenetic studies.  相似文献   

17.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

18.
The Sr- and Nd-isotopic compositions of large mid-Cenozoic caldera-forming eruptions, and related rocks, from the western portion of the Mogollon-Datil volcanic field have been determined. The average initial 87Sr/86Sr ratios of 27 samples from felsic flows range from 0.70629 to 0.72872; however, all but two flows are 0.71337 or less. Ten analyses of intermediate and mafic rocks showed a tendency towards lower initial 87Sr/86Sr ranging from 0.70363 to 0.70968. Initial 143Nd/144Nd ratios of II felsic and intermediate rocks range from 0.51216 to 0.51231. Two basalts analyzed for 143Nd/144Nd have ratios of 0.51250 and 0.51291. During the course of the volcanic activity from 34 Ma to the present, there was a shift towards lower initial 87Sr/86Sr ratios, and lower SiO2 contents. A number of models of crustal melting, fractionation, mixing, and assimilation and fractional crystallization (AFC), using a variety of possible endmembers, were tested, to see if they could explain the isotopic and geochemical characteristics of the Mogollon-Datil volcanic rocks. The best fit was an AFC model using two components, one a mantle-sourced primary magma, with isotopic ratios of the Kilbourne Hole, N. M., basanite, and the other an upper crust with average continental isotopic ratios, and Sr and Nd abundances similar to the Texas Canyon pluton of Arizona.  相似文献   

19.
Precambrian magmatism in the Biabanak-Bafq district represents an extensive sequence of mafic magmatic rocks. Major, trace and rare earth elements reveal that the low-Ti basement mafic rocks are magnesium tholeiite and low-Ti cover a mafic rock belongs to Fe-tholeiite, whereas, the high-Ti alkaline mafic rocks, as well as dolerites, show much more Fe–Ti enrichment. Primitive mantle normalized trace element patterns show a relative enrichment of LREE and LILE and depletion of HFSE, but have an equally distinct continental signature reflected by marked negative Nb, Sr, P, and Ti anomalies. The composition of the intrusive rocks is consistent with fractional crystallization of olivine ± clinopyroxene ± plagioclase, whereas variations in the Sr and Nd isotope compositions suggest heterogeneous sources and crustal contamination. Low-Ti group samples contain a crustal signature in the form of high La/Yb, Zr/Nb, and negative \(\varepsilon \hbox {Nd}\) values. In contrast, high-Ti mafic magmatic rocks display an increase in La/Yb with a decrease in Proterozoic alkaline rocks recognized across the central Iran. The presence of diverse mafic magmatic rocks probably reflects heterogeneous nature of sub-continental lithospheric mantle (SCLM) source. The mafic magmatism largely represents magmatic arc or rift tectonic setting. It is suggested that the SCLM sources were enriched by subduction processes and asthenospheric upwelling.  相似文献   

20.
Geochemistry of the Adamello massif (northern Italy)   总被引:2,自引:0,他引:2  
The Tertiary Adamello massif, outcropping over an area of more than 550 km2 in the southern Alps (northern Italy) is composed mainly of granitoid rocks (granodiorite, tonalite, quartz diorite) with minor amounts of diorite and gabbro. The major and trace element composition of these rocks is comparable to calc-alkaline volcanic rocks of continental margins. The granitoid rocks display spatial and temporal variations in their composition, particularly in Na, P, Sr, La, Nb and Y contents and 87Sr/86Sr ratios. The variations were probably produced by concurrent contamination/wall-rock assimilation and fractional crystallization of high-alumina basaltic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号