首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Simplon Fault Zone is a late-collisional low-angle normal fault (LANF) of the Western Alps. The hanging wall shows evidence of brittle deformation only, while the footwall is characterized by a c. 1 km-thick shear zone (the Simplon Fault Zone), which continuously evolved, during exhumation and cooling, from amphibolite facies conditions to brittle-cataclastic deformations. Due to progressive localization of the active section of the shear zone, the thermal-rheological evolution of the footwall resulted in a layered structure, with higher temperature mylonites preserved at the periphery of the shear zone, and cataclasites occurring at the core (indicated as the Simplon Line). In order to investigate the weakness of the Simplon Line, we studied the evolution of brittle/cataclastic fault rocks, from nucleation to the most mature ones. Cataclasites are superposed on greenschist facies mylonites, and their nucleation can be studied at the periphery of the brittle fault zone. This is characterized by fractures, micro-faults and foliated ultracataclasite seams that develop along the mylonitic SCC′ fabric, exploiting the weak phases mainly represented by muscovite and chlorite. Approaching the fault core, both the thickness and frequency of cataclasite horizons increase, and, as their thickness increases, they become less and less foliated. The fault core itself is represented by a thicker non-foliated cataclasite horizon. No Andersonian faults or fractures can be found in the footwall damage zone and core zone, whilst they are present in the hanging wall and in the footwall further from the fault. Applying a stress model based on slip tendency, we have been able to calculate that the friction coefficient of the Simplon Line cataclasites was <0.25, hence this fault zone is absolutely weak. In contrast with other fault zones, the weakening effect of fluids was of secondary importance, since they accessed the fault zone only after an interconnected fracture network developed exploiting the cataclasite network.  相似文献   

2.
《Journal of Structural Geology》2001,23(6-7):1167-1178
S–C fabrics similar to those found in mylonites are observed in foliated cataclastic granitic rocks from the Nojima fault zone, southwest Japan. The foliated cataclastic rocks comprise cataclasite, fault breccia, gouge, and crushing-originated pseudotachylyte. The S–C fabrics observed in these cataclastic rocks involve S-surfaces defined by shape preferred orientation of biotite fragments or aggregates of quartz and feldspar fragments, and C-and C′-surfaces defined by microshears and shear bands, respectively, where fine-grained material is concentrated. Striations on the main fault plane are oriented parallel to the cataclasite lineations. A significant microstructural difference between the foliated cataclastic rocks and S–C mylonites is the absence of dynamically recrystallized grains in the foliated cataclasites. The striations, cataclastic lineations, and the S–C fabrics in the cataclastic rocks formed from the late Tertiary to the late Holocene indicate that the Nojima fault zone has moved as a dextral strike-slip fault, with a minor reverse component since it formed. S–C fabrics in cataclastic rocks provide important information on the tectonic history and are reliable kinematic indicators of the shear sense in brittle shear zones or faults.  相似文献   

3.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   

4.
We studied the geometry, intensity of deformation and fluid–rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid–rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange–brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid–rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.  相似文献   

5.
We report the results of permeability measurements of fault gouge and tonalitic cataclasite from the fault zone of the Median Tectonic Line, Ohshika, central Japan, carried out during triaxial compression tests. The experiments revealed marked effects of deformation on the permeability of the specimens. Permeability of fault gouge decreases rapidly by about two orders of magnitude during initial loading and continues to decrease slowly during further inelastic deformation. The drop in permeability during initial loading is much smaller for cataclasite than for gouge, followed by abrupt increase upon failure, and the overall change in permeability correlates well with change in volumetric strain, i.e., initial, nearly elastic contraction followed by dilatancy upon the initiation of inelastic deformation towards specimen failure. If cemented cataclasite suffers deformation prior to or during an earthquake, a cataclasite zone may change into a conduit for fluid flow. Fault gouge zones, however, are unlikely to switch to very permeable zones upon the initiation of fault slip. Thus, overall permeability structure of a fault may change abruptly prior to or during earthquakes and during the interseismic period. Fault gouge and cataclasite have internal angles of friction of about 36° and 45°, respectively, as is typical for brittle rocks.  相似文献   

6.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   

7.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

8.
Fault rocks from the Siberia Fault Zone (SFZ) in southern New Zealand are derived from schists with varied mica contents. Regional evidence indicates that the rocks are exhumed from depths of 8-10 km and temperatures of 200-250 °C. Foliated cataclasites in a zone 5-40 m thick are accompanied by interlaced pseudotachylyte, and are cut through by a late-stage master fault and zones of random fabric cataclasite. Textures and microstructures in the foliated cataclasites reflect contemporaneous or cyclic operation of cataclastic, crystal-plastic and solution transfer deformation mechanisms, partitioned differently between different phases. The deformation regime is interpreted as a form of semi-brittle flow, facilitated by crystal-plastic deformation of phyllosilicate phases in a relatively weak interconnected matrix. Quartz and feldspar are deformed mainly by cataclasis. The presence of pseudotachylyte indicates the fault was seismically active, and non-localised semi-brittle flow was episodically punctuated by high strain-rate earthquake events. Late-stage formation of a discrete master fault probably reflects a change from semi-brittle flow to brittle faulting. The presently exposed level of the fault is thought to represent a section of the mid-crustal brittle-ductile transition in the seismogenic zone. Thus, this study provides a tangible natural example of theoretically and experimentally predicted fault rocks.  相似文献   

9.
Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S–C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.  相似文献   

10.
The structure of a fault zone developed in granitic rocks can be established on the basis of the spatial variability of geological, geophysical and geochemical parameters. In the North Fault of the Mina Ratones area (SW Iberian Massif, Spain), fault rocks along two studied traverses (SR-2 and SR-3 boreholes) exhibit systematic changes in mineralogy, geochemistry, fabrics and microstructures that are related to brittle deformation and alteration of granite to form cataclasite and subsequent gouge. The spatial distribution and intensity of these changes suggest a North Fault morphology that is consistent with the fault-core/damage-zone model proposed by Chester et al. (1993) to describe a fault zone architecture. North Fault damage zone thickness can be defined by the development of mechanically related mesoscopic faults and joints, that produce a Fracture Index (FI)>10. High FI values are spatially correlated with relative low seismic velocity zones (VP<5 km/s and VS<2.5 km/s in the well-logs), more probably related to a high concentration of fractures and geochemical alteration produced by meteoric water-granite interaction along fault surfaces. This correlation is the base of a geostatistical model proposed in the final part of this study to image the fault zone architecture of a granitic massif.  相似文献   

11.
以野外观察描述为手段,系统研究了碳酸盐岩断裂变形机制的影响因素及断裂带结构演化过程,剖析了碳酸盐岩地层中断裂带结构与流体运移的关系。研究表明,影响碳酸盐岩内断裂变形机制的因素包括岩性、孔隙度、变形深度、温度、胶结作用、先存裂缝等,控制断裂带结构形成的因素包括滑动位移和破裂模式等。低孔隙度碳酸盐岩以裂缝发育为主,高孔隙度碳酸盐岩变形早期产生变形带,带内裂缝联接逐渐发育成断层带。随着埋藏深度的增加,断裂带结构不同:埋藏深度小于3 km,断层核主要发育无内聚力的断层角砾岩和断层泥;埋藏深度大于3 km,断层核普遍发育有内聚力的断层角砾岩和碎裂岩,破碎带发育多种成因的裂缝。随着位移的增加,破裂模式从早期的破裂作用变为后期的碎裂作用,最终形成碎裂流。断裂带演化是一个四维过程,断层核和破碎带发育情况直接影响断层对油气的运移和封闭的作用。断裂变形机制、断裂带内部结构以及与流体运移关系的研究,都可为封闭性提供重要的理论依据。  相似文献   

12.
Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid–rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6–8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S–C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe–Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S–C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0.05 K0.86 (Al 1.77 Fe0.08 Mg0.15) (Si3.22 Al0.78) O10 (OH)2. They are enriched in Fe and Mg compared to the detrital micas. Newly-formed chlorites are associated with micas along the shear planes. According to microprobe analyses, they present the following structural formula: (Al1,48 Fe2,50 Mg1,84) (Si2,82 Al1,18) O10 (OH)8. All these data suggest that these clay minerals are synkinematic and registered the fault activity. In the gouge samples, illite and chlorite are the major clay minerals; smectite is locally present in some samples.In the foliated sandstones, Kubler Index (KI) ((001) XRD peak width at half height) data and thermodynamic calculations from synkinematic chlorite chemistry suggest that the main fault deformation occurred under temperatures around 220 °C (diagenesis to anchizone boundary). KI measured on pelites and sandstones from the hanging and footwall, display similar values coherent with the maximal burial temperature of the Annot sandstones in this area. The gouge samples have a higher KI index, which could be explained by a reactivation of the fault at lower temperatures during the exhumation of the Annot sandstones formation.  相似文献   

13.
北京云蒙山地区花岗岩穹隆及伸展构造的探讨   总被引:9,自引:0,他引:9  
张建新  曾令森 《地质论评》1997,43(3):232-240
北京云蒙山花岗岩为一中生代侵入的花岗岩穹隆,花岗岩穹隆的叶理普遍发育,叶理轨迹基本平行于穹隆的外部边界,并显示出从核部到边部逐渐增强,东南侧明显强于西北侧的特点。变形构造研究显示,花岗岩穹隆的边部及围岩中普遍存在不同层次及不同运动方向的伸展构造。东南侧以具河防口-水峪伸展型韧性剪切带为特征,剪切运动标志显示为从NW-SE的正剪切运动,有限应变分析估算其剪切位移量在10km以上,剪切带上部被河防口正  相似文献   

14.
断裂相的概念为断裂带的内部结构研究提供了新的思路与建模方法,通过塔里木盆地柯坪露头断裂带的分析,碳酸盐岩断裂相特征有别于碎屑岩.柯坪露头碳酸盐岩断裂带不连续构造以滑动面、裂缝带和变形带发育为特征.根据形态识别出平直截切型、弯曲起伏型、渐变条带型三种类型滑动面.破碎带中裂缝带发育,裂缝充填少,是良好输导通道;断层核部存在...  相似文献   

15.
The role of hydrothermal fluids in assisting the activity of strike-slip faults is investigated using a range of new geological, geophysical, and geochemical data obtained on the Argentat fault, Massif Central, France. This fault zone, 180-km-long and 6 to 8 km-width, has experienced coeval intense channeling of hydrothermal fluids and brittle deformation during a short time span (300–295 Ma). According to seismic data, the fault core is a 4-km-wide, vertical zone of high fracture density that rooted in the middle crust (~ 13 km) and that involved fluids in its deeper parts (9–13 km depth). If stress analyses in the fault core and strain analyses in the damage zone both support a left-lateral movement along the fault zone, it is inferred that hydrothermal fluids have strongly influenced fault development, and the resulting fault has influenced fluid flow. Fluid pressure made easier fracturing and faulting in zones of competent rocks units and along rheological boundaries. Repeated cycles of increase of fault-fracture permeability then overpressure of hydrothermal fluids at fault extremity favored strong and fast development of the crustal-scale strike-slip fault. The high permeability obtained along the fault zone permitted a decrease of coupling across the weak fault core. Connections between shallower and lower crustal fluids reservoirs precipitate the decrease of fault activity by quartz precipitation and sulfides deposition. The zones of intense hydrothermal alteration at shallows crustal levels and the zones of fluid overpressure at the base of the upper crust both controlled the final geometry of the crustal-scale fault zone.  相似文献   

16.
The unlined Bedretto tunnel in the Central Swiss Alps has been used to investigate in detail the fault architecture and late Alpine brittle faulting processes in the Rotondo granite on macroscopic and microscopic scales. Brittle faults in the late Variscan Rotondo granite preferentially are situated within the extent of preexisting ductile shear zones. Only in relatively few cases the damage zone extends into or develops in the previously undeformed granite. Slickensides suggest a predominant (dextral) strike-slip movement along these steeply dipping and NE–SW-striking faults. Microstructures of these fault rocks illustrate a multi-stage retrograde deformation history from ductile to brittle conditions up to the cessation of fault activity. In addition these fabrics allow identifying cataclastic flow, fluid-assisted brecciation and chemical corrosive wear as important deformation mechanisms during this retrogressive deformation path. Based on the analysis of zeolite microfabrics (laumontite and stilbite; hydrated Ca–Al- and Na–Ca–Al–silicate, respectively) in fault breccias, cataclasites and open fractures we conclude, that the main phase of active brittle faulting started below 280°C and ceased ca. 14 Ma ago at temperatures slightly above 200°C. This corresponds to a depth of approx. 7 km.  相似文献   

17.
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing.The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2–3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.  相似文献   

18.
The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°–75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°–75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the MFZ further suggests that the wide, phyllosilicate-rich fault core acted as an efficient hydrological barrier, resulting in a relatively hydrous footwall and fault core but a relatively dry hanging-wall.  相似文献   

19.
《Geodinamica Acta》2003,16(2-6):99-117
The Bielsa thrust sheet is a south-verging unit of the Axial zone in the central Pyrenees. The Bielsa thrust sheet consists predominantly of a Variscan granite unconformably overlain by a thin cover of Triassic and Cretaceous deposits. During the Eocene–Oligocene, Pyrenean compression, displacement of the Bielsa thrust sheet generated a large-scale south-verging monocline. Low temperature deformation of the Bielsa thrust sheet resulted in the development of: (1) E–W trending, asymmetric folds in the Triassic cover with amplitudes up to 1.5 km; these folds of the cover are related with normal and reverse faults in the granite and with rigid-body block rotations. (2) Pervasive fracturing within the Bielsa granite is also attributed to Pyrenean deformation and is consistent with a NNE to ENE shortening direction; two main, conjugate fault systems are associated with this direction of shortening, as is a subvertical strike-slip system with shallow-plunging slickenside lineations and a moderately dipping fault system with reverse movement; and (3) in addition, we recognise strike-slip and reverse shear bands, associated with sericitisation and brittle deformation of quartz and feldspar in the granite, that enclose Triassic rocks. Basement deformation within the Bielsa thrust sheet can be related to movement of faults developed to accommodate internal deformation of the hanging wall. Several models are proposed to account for this deformation during the southward displacement of the thrust.  相似文献   

20.
山东胶西北矿集区和焦家金矿田成矿构造系统   总被引:2,自引:0,他引:2  
胶西北矿集区金矿床主要受三山岛断裂、龙莱断裂和招平断裂3条主干断裂及其次级断裂控制,构成胶西北3条金矿带和一系列金矿田。断裂总体呈NNE走向,平面形态呈S形,多期活动特征明显,自主裂面向外依次出现黄铁绢英岩质碎裂岩、黄铁绢英岩化花岗质碎裂岩、黄铁绢英岩化花岗岩等矿化蚀变带。焦家金矿田受焦家断裂的控制,金矿床在平面上主要产于焦家断裂分枝复合、膨胀转折的部位;焦家断裂在剖面上呈上陡下缓的铲式特征,金矿床主要产于断裂倾角由陡变缓的转折点下部,主要矿体沿焦家断裂下盘分布,赋存于主裂面和与主裂面平行的一组缓倾斜裂隙中,远离主裂面逐渐出现一组陡倾的控矿裂隙。胶西北3条主要金矿控矿断裂构成了一条沿玲珑花岗岩与早前寒武纪地质体边界分布的大型伸展构造带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号