首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of Zn speciation on Zn transport by drainage from different soils to surface water is examined in a stream catchment in an agricultural area. Drainage waters were collected from two types of soils, a mineral soil (MS) and a soil rich in organic matter (OS) by means of artificial drainage pipes. The speciation of dissolved Zn in the stream and the drainage waters was determined using ligand-exchange and voltammetry. About 50–95% of dissolved Zn is bound in strong complexes, and the free Zn2+ ion concentration is in the range of 1–16% of dissolved Zn. A substantial part of Zn is present in weaker organic or inorganic complexes. The simulated Zn speciation using the WHAM VI model is compared to the determined speciation. Free Zn2+ concentrations predicted by the WHAM VI model are generally higher than the analytically determined free Zn2+, but are mostly within the same order of magnitude. Effects of different soil organic matter content on Zn speciation and transport are discussed. Zn speciation in the drainage at the OS site is influenced by the distribution of organic matter between the solid and solution phase. The abundant organic Zn complexes in solution contribute to facilitate Zn transport from soil into surface waters, through the drainage at the OS site. Drainage from the OS site contributes about twice as much Zn input to the receiving water as the MS soil, as related to specific area. The mineral soil contains much lower organic matter, and a part of Zn bound with inorganic phases can hardly be released by dissolved organic ligands, leading to much higher Zn retention at the MS site.  相似文献   

2.
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models.  相似文献   

3.
Combining in situ diffusion and column ion-exchange equilibration, we measured free metal ion concentrations (Cd, Cu and Zn) in water samples collected from the epilimnion of 14 lakes in the Rouyn-Noranda area (600 km north-west of Montreal, QC, Canada). Lakes were selected to represent a wide range of physico-chemical characteristics (hardness, pH, dissolved organic matter—DOM, degree of metal contamination), to determine the influence of these parameters on metal speciation. Total dissolved metal concentrations, as determined within the diffusion cells, varied over one to two orders of magnitude: [Cd] 0.19–2.9 nM; [Cu] 36–190 nM; [Zn] 7–2,800 nM. The proportion of total dissolved metal present as free Cd2+ and Zn2+ was relatively constant for the 14 selected lakes, despite the wide pH (4.5–8) and DOM (3–23 mg C/L) ranges, probably reflecting the inverse relationship observed between pH and DOM; this proportion did, however, vary with DOM and pH for Cu. Our experimental free metal ion concentrations were compared with those calculated with the thermodynamic models WHAM (Windermere Humic Aqueous Model VI) and ECOSAT 4.7 (incorporating the NICA-Donnan model). Measured and calculated values were in reasonable agreement for both Cd and Zn although measured values were generally slightly higher, i.e. less than one order of magnitude. For several lakes, measured free Cu concentrations were, however, much higher than the calculated values, suggesting that these models overestimate Cu complexation. The gap between measured and calculated free metal ion concentration becomes more important as the total metal concentration decreases and as pH increases.  相似文献   

4.
Equilibrium dialysis was used to measure Co- and Cu-binding by an isolated peat humic acid (PHA) in controlled laboratory experiments under simulated estuarine conditions: ionic strengths of 0.005 to 0.7 M in NaCl and mixed Na-Mg-Ca chloride solutions, with trace metal concentrations of ∼5 × 10−7 M, a PHA concentration of 10 mg/L, and at constant pH values of ∼7.8 (Co and Cu) and ∼4.6 (Cu only). Generally, Co- and Cu-humic binding decreased substantially with increasing ionic strength and, in the case of Cu, with decreasing pH. The presence of seawater concentrations of Ca and Mg had a relatively small effect on Co-humic binding and no measurable effect on that of Cu under the experimental conditions. The binding data were well-described by an equilibrium speciation code (the Windermere Humic Aqueous Model, WHAM) after optimising the fits by varying the metal-proton exchange constants for humic acid within justifiable limits (i.e., within 1 standard deviation of the mean exchange constants used in the WHAM database). The main factor producing the observed variations in metal-humic binding at constant pH was the electrostatic effect on the humic molecule. WHAM was used to predict Co- and Cu-humic binding in simulations of real estuaries. Co-humic binding is predicted to be relatively unimportant (generally <5% of total Co), whereas the Cu-humic complex is likely to be the dominant species throughout an estuary. The main factors producing changes in Co- and Cu-humic binding in the real-estuary simulations are the electrostatic effect on the humic molecule, ligand competition (mainly from carbonate species) for metals, and to a lesser extent Ca and Mg competition for humic binding sites. Variations in pH are significant only at the freshwater end of an estuary. WHAM simulations also indicated that competition effects between metals are more likely to occur in freshwaters than in seawater, due to enhanced electrostatic binding at low ionic strength.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(19-20):3311-3319
Copper speciation was determined monthly at seven sites on four rivers in southern New England to understand which geochemical factors control free metal ion concentrations in river water. Samples were conventionally filtered (<0.45 μm) and then ultrafiltered (3.000 molecular weight cut-off) to determine Cu speciation in the truly dissolved size fraction. Differential pulse anodic stripping voltammetry (DPASV) was used to quantify natural organic complexation and cathodic stripping square wave voltammetry (CSSWV) to measure directly both Cu sulfide complexes and total EDTA concentrations. The results showed both dissolved organic matter (DOM) and sulfide complexation dominate Cu speciation and control the concentrations of free ion. Free Cu2+ was calculated to be in the subnanomolar range for the majority of the year. Only in the winter months, when concentrations of DOM and metal sulfides complexes were at a minimum were free metal ions directly measurable by DPASV at low nanomolar concentrations. The extent of sulfide complexation appears to be dominated by the size of headwater marshes (upstream sampling sites) and by the amount of sewage treatment plant effluent (downstream sites). DOM complexation was related to the organic matter composition and followed model organic ligands. Indirect evidence suggests variations in river water pH and Ca2+ (metal competition) has only a minor role in Cu complexation. Measured concentrations of total EDTA suggest this synthetic ligand can control Cu speciation in some highly developed watersheds; however, competition from Ni (and possibly Fe) limits the extent of this complexation.  相似文献   

6.
The technique of competitive ligand-exchange/anodic stripping voltammetry (CLE-SV) was used to investigate effects of pH and Ca concentration on cadmium complexation by fulvic acid (FA), as well as Cd speciation in two different freshwaters, a hardwater Lake Greifen and a softwater River Wyre. Binding of Cd to Suwannee river FA (10 mg/l) was determined at different pH (7–8.5) and in the presence of various concentration of Ca2+ (0–2 mmol/l). The results from one-ligand discrete models were compared to simulations by the WHAM VI model. In Lake Greifen, the determined dissolved [Cd2+] ranged from 10−13 to 10−12 mol/l, and the conditional stability constant with natural ligands was log K CdL about 9.5–10.5 (pH 8.6–8.8) with ligand concentrations of 1.2–7.8 × 10−6 mol/g C. In the softwater River Wyre, dissolved [Cd2+] ranged from 4 × 10−12 to 1 × 10−11 mol/l, and the ligands were weaker (log K CdL 8.9–9.8, pH 8.0) with lower ligand concentrations (0.9–2.3 × 10−6 mol/g C). The titration curves of FA samples were close to the simulated curves by the WHAM VI model at pH 8.0–8.5, but deviated more from the model at lower pH, indicating that the results determined with CLE-SV for Cd-FA complexation are relevant to the data base in the model. Calculation of the Ca competition for Cd binding by FA showed a competition effect of similar strength as the measured one, but indicated a systematic difference between measured and modeled data at pH 7.5. Using the WHAM model for comparison with FA, the complexation of Cd by the River Wyre ligands was close to that of FA, whereas stronger complexation was observed in the Lake Greifen water. These differences may originate from different ligand composition in the lake and the river.  相似文献   

7.
The removal of the chromium (VI) ion from aqueous solutions with the Lewatit FO36 ion-exchange resin is described at different conditions. The effects of adsorbent dose, initial metal concentration, contact time and pH on the removal of chromium (VI) were investigated. The batch ion exchange process was relatively fast and it reached equilibrium after about 90 min of contact. The ion exchange process, which is pH dependent showed maximum removal of chromium (VI) in the pH range 5.0–8.0 for an initial chromium (VI) concentration of 0.5 mg/dm3. The equilibrium related to Lewatit FO36 ion- exchange capacity and the amounts of the ion exchange were obtained using the plots of the Langmuir adsorption isotherm. It was observed that the maximum ion exchange capacity of 0.29 mmol of chromium (VLVg for Lewatit FO36 was achieved at optimum pH value of 6.0. The ion exchange of chromium (VI) on this cation-exchange resin followed first-order reversible kinetics.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(19-20):2891-2901
A long-standing problem in aquatic geochemistry has been the incorporation of natural organic matter (NOM) into speciation models. The general effect of NOM on metal ion sorption by particles has been understood for some time, and significant progress has been made in elucidating some of the details of the role of NOM through the use of surrogate organic acids such as citric acid. However, a gap exists between the general observations that have been made of NOM behavior and the inclusion of NOM in surface chemical models for metal ion sorption. In this paper, we report on the results of a study on the sorption of U(VI) by hematite in the absence and presence of Suwannee river humic acid (HA) and over a range of other system conditions (e.g., pH, I). Essential HA characteristics (e.g., its acid/base, metal binding, and surface chemical properties) were “captured” by representing the HA as an assembly of monoprotic acids with assumed pK values and without explicit correction for electrostatic effects. The ternary system (hematite/HA/U(VI)) was simulated through the combination of the binary submodels (i.e., CO32−/hematite, U(VI)/HA, U(VI)/hematite, and HA/hematite) with model constants fixed at the values determined from simulations of the respective experimental systems. However, the “summed-binary” approach undersimulated experimental results, and the ternary system model required the postulation of two ternary surface (Type A) complexes composed of the uranyl ion, hematite surface sites, and the model ligands comprising the HA. Consideration of the HA in this manner permitted the simulation of HA effects on U(VI) sorption by hematite over a range of solution conditions using a general speciation model.  相似文献   

9.
Remediation of U-contaminated sites relies upon thermodynamic speciation calculations to predict U(VI) movement in the subsurface. However, reliability and applicability of geochemical speciation and reactive transport models may be limited by determinate (model) errors and random (uncertainty) errors in the equilibrium speciation calculations. This study examines propagated uncertainty in two types of subsurface calculations: I. Dissolved U(VI) speciation based on measured analytical constraints and solution phase equilibria and II. Overall U(VI) speciation which combined the dissolved phase equilibria with previously published adsorption reactions. Three levels of uncertainty, instrumental uncertainty, temporal variation and spatial variation across a site, were investigated using first-derivative sensitivity calculations and Monte Carlo simulations. Dissolved speciation calculations were robust, with minimal amplification of uncertainty and normal output distributions. The most critical analytical constraints in the dissolved system are pH, DIC, total U and total Ca, with some effect from dissolved . When considering adsorption equilibria, calculations were robust with respect to adsorbed U(VI) concentration prediction, but bimodal distributions of dissolved U(VI) concentrations were observed in simulations with background levels of total U(VI) and higher (spatial and temporal variability) estimates of input uncertainty. Consequently, sorption model predictions of dissolved U(VI) may not be robust with respect these higher levels of uncertainty.  相似文献   

10.
Selective removal of Ni and Co, from a high pressure acid leach (HPAL) solution of a Brazilian laterite nickel ore that contains relatively high concentration of impurities, was carried out with an ion exchange chelating resin possessing iminodiacetic acid group (Amberlite IRC 748®). The resin was tested in column experiments. The experimental results showed that higher pH values improved the ion exchanger performance and higher nickel load capacities were achieved. Besides, increasing nickel concentration in solution, nickel uptake and selectivity were substantially improved. The breakthrough experimental curves also showed that many metals were immediately brokenthrough just after the initiation of the feed, while the breakthrough of Ni began later. These results suggested that it is feasible to purify HPAL solution recovering nickel selectively using the chelating resin Amberlite IRC748® if some specific conditions related to pH, flow rate and nickel concentration are applied. Removal of metals from the resin was successfully performed with HCl and H2SO4 solutions. Nickel was eluted concentrated more than 20 times its initial concentration in the feed solution, while only a trace amount of impurities was eluted.  相似文献   

11.
This study introduces the application of a dynamic fuzzy neural network for fitting and simulating the adsorption of nickel, cadmium, and zinc ions in mono- and bi-metallic solutions (nickel–cadmium, nickel–zinc, and cadmium–zinc) using packed-bed columns with bone char. This neural network model has shown a flexible and self-adaptive architecture with a faster learning speed than that of traditional artificial neural approaches. Results showed that this neural network model was reliable for representing the high asymmetry behavior of concentration profiles in both mono- and bi-metallic breakthrough curves where its accuracy was quite reasonable. Breakthrough parameters for mono-component and binary systems of tested heavy metals were calculated and compared. This analysis showed that the removal of these heavy metal ions in binary systems was a strong competitive adsorption process where the presence of co-ions reduced the removal performance of bone char at fixed-bed adsorbers. Results of surface characterization of adsorbent samples with X-ray photoelectron and infrared spectroscopy supported a removal mechanism based on an ion exchange between calcium from hydroxyapatite of bone char and heavy metal ions in the solution forming new metal–phosphate interactions in the adsorbent surface.  相似文献   

12.
Adsorption and desorption of uranium(VI) from dilute aqueous solutions by Eucalyptus citriodora distillation sludge was studied in a batch mode. The potential of Eucalyptus citriodora distillation sludge to remove uranium(VI) from aqueous solutions has been investigated at different conditions of solution pH, metal ion concentrations, biosorbent dosage, biosorbent particle size, contact time and temperature. The results indicated that biosorption capacity of Eucalyptus citriodora distillation sludge was strongly affected by the medium pH, the biosorbent dose, metal ion concentrations and medium temperature. Reduction in particle size increased the biosorption capacity. Langmuir and Freundlich isotherm models were applied to biosorption data to determine the biosorption characteristics. An optimum biosorption capacity (57.75 mg/g) was achieved with pH 4.0, particle size 0.255 mm, biosorbent dose 0.5 g/100 mL and initial uranium(VI) concentration of 100 mg/L. Uranium(VI) removal by Eucalyptus citriodora distillation sludge was rapid, the equilibrium was established within 60 min and pseudo-second-order model was found to fit with the experimental data. The biosorption process decreased with an increase in the temperature indicating its exothermic nature. Pretreatments of biomass with different reagents affected its biosorption capacity. A significant increase (34 %) in biosorption capacity (83.25 mg/g) was observed with benzene treatment. Fourier-transform infra-red studies showed the involvement of carbonyl, carboxyl and amide groups in the biosorption process. The results indicated that sulfuric acid had the best effects as an eluent showing 93.24 % desorption capacity.  相似文献   

13.
Uranium(VI), which is often elevated in granitoidic groundwaters, is known to adsorb strongly to Fe (hydr)oxides under certain conditions. This process can be used in water treatment to remove U(VI). To develop a consistent geochemical model for U(VI) adsorption to ferrihydrite, batch experiments were performed and previous data sets reviewed to optimize a set of surface complexation constants using the 3-plane CD-MUSIC model. To consider the effect of dissolved organic matter (DOM) on U(VI) speciation, new parameters for the Stockholm Humic Model (SHM) were optimized using previously published data. The model, which was constrained from available X-ray absorption fine structure (EXAFS) spectroscopy evidence, fitted the data well when the surface sites were divided into low- and high-affinity binding sites. Application of the model concept to other published data sets revealed differences in the reactivity of different ferrihydrites towards U(VI). Use of the optimized SHM parameters for U(VI)-DOM complexation showed that this process is important for U(VI) speciation at low pH. However in neutral to alkaline waters with substantial carbonate present, Ca–U–CO3 complexes predominate. The calibrated geochemical model was used to simulate U(VI) adsorption to ferrihydrite for a hypothetical groundwater in the presence of several competitive ions. The results showed that U(VI) adsorption was strong between pH 5 and 8. Also near the calcite saturation limit, where U(VI) adsorption was weakest according to the model, the adsorption percentage was predicted to be >80%. Hence U(VI) adsorption to ferrihydrite-containing sorbents may be used as a method to bring down U(VI) concentrations to acceptable levels in groundwater.  相似文献   

14.

Background

Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation.

Results

Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10-6 M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state.

Conclusions

Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples.  相似文献   

15.
Mercury (Hg) concentrations in air, effluent water, landfill gas, leachate, groundwater, and soil at a hazardous solid waste landfill site in Korea were measured along with air–soil surface Hg exchange fluxes at the site. The concentrations and fluxes were considerably higher than have been found elsewhere in Korea. Gaseous Hg concentrations in the air peaked during the day, coinciding with Hg being released from the landfill surface. This suggests that air–soil exchange increased the Hg concentrations in the atmosphere. The air–soil exchange flux increased abruptly when solar radiation reached the soil surface. The Hg flux peaked about 3 h before the solar radiation peaked, possibly because reducible Hg was abundant at the soil surface. The Hg emission flux activation energy (E a) was low, indicating that the Hg species present and Hg–soil binding were probably not as important (because of the high Hg content of the soil) as in previous studies. The methylmercury to total Hg ratios in the discharged effluent, groundwater, and leachate was clearly higher than typically found in coastal water and freshwater, suggesting bacteria caused active methylation to occur under the reducing conditions in the anaerobic landfill. The results suggested that considerable amounts of Hg are probably transported from the landfill to nearby environmental media and that this will continue if waste with a high Hg content continues to be added to the landfill without being pretreated.  相似文献   

16.
Adsorption of chromium and copper in aqueous solutions using tea residue   总被引:5,自引:3,他引:2  
In this study, adsorption of copper and chromium was investigated by residue of brewed tea (Tea Waste) from aqueous solutions at various values of pH. It was shown that adsorbent dose, copper and chromium ion concentrations in such solutions influence the degree of these heavy metal ions’ obviation. The adsorption level of the prepared solutions was measured by visible spectrophotometer. The tea residue adsorbed copper (II) and chromium (VI) ions at initial solution pH by 25 % and 3 %, respectively. During the experiments the peak adsorption occured in hydrated copper nitrate aqueous solution at pH range of 5–6. Likewise the maximum adsorption appeared in potassium chromate aqueous solution at pH range of 2–3. In addition, tea residue adsorbed about 60 mg/g of copper (II) ion at pH=5, while chromium adsorption was registered at about 19 mg/g at pH=2. The data obtained at the equilibrium state, was compared with Langmuir and Freundlich models. Results showed that regarding the kinetics of adsorption, the uptake of copper (II) and chromium (VI) ions by tea residue was comparatively faster, with the adsorption process exhaustion completed within the first 20 min of the experiments. Furthermore, results revealed that adsorption data concerning the kinetic phase is closely correlated with a pseudo-second order model with R2> 0.99 for copper (II) and chromium (VI) ions  相似文献   

17.
Metal and metalloid (As, Cd, Co, Cu, Pb and Zn) distribution in soils from the Katanga Copperbelt (Democratic Republic of Congo) is investigated in order to characterize the environmental impacts of mining and smelting activities in that area. The concentrations of Cu, Co, As, Zn, Pb and Cd in soils from mining sites are higher than in non-metalliferous sites and above permissible metal and metalloid concentrations in soils. Moreover, the fractionation and mobility of Co, and Cu in such environment is assessed using the application of both ammonium acetate-EDTA extraction and speciation modeling (WHAM 6). The resulting data set covers wide range of environmental conditions (pH, trace metals concentration, natural soils and soils affected by mining and ore processing). These extractions show that only a small fraction of Cu and Co is mobile, with variation depending on sites: mobility is higher in soils affected by mining and ore processing. The strong affinity of Mn-oxides for Co may explain lower Co mobility in Mn-rich soils. The high Mn and Fe contents of Cu–Co soils from Katanga may actually exert a protective effect against the toxic effects of Co. Finally, Cu–Co speciation modeling of contaminated sites emphasizes that organic matter strongly sorb Cu whereas Co speciation is mostly by Mn content. This type of study leads to a better understanding of metal fractionation and can guide to define different practices of phytoremediation.  相似文献   

18.
Nowadays, environmental problems related to soil pollution with heavy metals are numerous, therefore, it is important to understand metals behaviour in aquatic sediments and soils and to estimate their transfer. The fate of metals in the environment is closely related to their interactions with the major reactive compartments (organic matter, iron and manganese oxides, clays). The objective of this work is to develop an approach based on the combination of several models to study metal ion speciation in different environmental systems. Models used to describe the interactions of metals with the main reactive phases in the soil are CD-MUSIC (amorphous and crystallized iron oxides), NICA-Donnan (organic matter and manganese oxides) and cationic ion exchange model (clays). First, this work implies the definition of generic parameters to describe the interactions of the studied metals with iron and manganese oxides and part of this information is missing in the literature. Then, after a validation of the approach by comparison with analytical results, this multi-surface model is applied to test sites corresponding to one soil and two riverine environments.These new models give good predictions of the behaviour of major and trace metal ions even in heterogeneous systems characteristic of natural environment. The measured free metal concentrations in the solution are in agreement with those obtained from model calculations. In the case of the soil test site, the soil solution composition and speciation are predicted using the soil major constituents characteristics.  相似文献   

19.
Cadmium and zinc were added at 3 and 300 mg kg−1, respectively, to 23 soils and incubated at 16°C and 80% field capacity for 818 d. Following addition of metal, changes in the radio-labile concentrations of both elements were examined on seven separate sampling occasions over 818 d. At each sample time, soil pore water was extracted using Rhizon soil solution samplers, and concentrations of Cd, Zn, dissolved organic carbon, and major cations and anions were determined. The chemical speciation program WHAM 6 was used to determine free metal ion activity, (M2+). Similar measurements were made on a set of historically contaminated soils from old mining areas, sewage sludge disposal facilities, and industrial sources. The two data sets were combined to give a range of values for p(Cd2+) and p(Zn2+) that covered 5 and 4 log10 units, respectively. A pH-dependent Freundlich model was used to predict Zn2+ and Cd2+ ion activity in soil pore water. Total and radio-labile metal ion concentration in the solid phase was assumed to be adsorbed on the “whole soil,” humus, or free iron oxides to provide alternative model formats. The most successful models assumed that solubility was controlled by adsorption on soil humus. Inclusion of ionic strength as a model variable provided small improvements in model fit. Considering competition with Ca2+ and between Zn2+ and Cd2+ produced no apparent improvement in model fit. Surprisingly, there was little difference between the use of total and labile adsorbed metal as a model determinant. However, this may have been due to a strong correlation between metal lability and pH in the data set used. Values of residual standard deviation for the parameterized models using labile metal adsorbed on humus were 0.26 and 0.28 for prediction of p(Cd2+) and p(Zn2+), respectively. Solubility control by pure Zn and Cd minerals was not indicated from saturation indices. However there may have been fixation of metals to non-radio-labile forms in CaCO3 and Ca-phosphate compounds in the soils in the higher pH range. Independent validation of the Cd model was carried out using an unpublished data set that included measurements of isotopically exchangeable Cd. There was good agreement with the parameterized model.  相似文献   

20.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号