首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

2.
The long-term variation of total ozone is studied for 1957 up to date for different latitude zones. The 3-year running averages show that, apart from a small portion showing parallelism with sunspot cycles, the trends in different latitude zones are dissimilar. In particular, where northern latitudes show a rising trend, the southern latitudes show an opposite (decreasing) trend. In the north-temperate group, Europe, North America and Asia show dissimilar trends. The longer data series (1932 ownards) for Arosa shows, besides a solar-cycle-dependent component, a steady level during 1932–1953 and a down-trend thereafter up to date. Very localised but long-lasting circulation patterns, different in different geographical regions, are indicated.  相似文献   

3.
All available data of the vertical ozone distribution measured with chemical sondes have been assembled and combined with one year's results from the BUV satellite to obtain the best possible information on the vertical ozone distribution averaged over longitude as a function of season (month by month). For the southern hemisphere Umkehr data have been used as a guideline in the necessary smoothing procedure. Especially in the northern hemisphere considerable adaptation to the observed latitudinal mean of the total amount was needed because most sounding stations, are situated in upper air trough positions.The results are presented as vertical distributions, as meridional cross sections of partial pressure and of mixing ratio and as partial pressure isolines as a function of latitude and season at different levels. The interaction between photochemical processes and transport resonsible for the observed distribution is briefly discussed.  相似文献   

4.
Starting with the average actual distribution of ozone (Dütsch [15]) and temperature in the stratosphere, we have calculated the solar intensity as a function of wavelength and the instantaneous rates (molecules cm–3 sec–1) for each Chapman reaction and for each of several reactions of the oxides of nitrogen. The calculation is similar to that ofBrewer andWilson [5]. These reaction rates were calculated independently in each volume element in spherical polar coordinates defined by R=1 km from zero to 50, =5° latitude, and ø=15° longitude (thus including day and night conditions). Calculations were made for two times: summer-winter (January 15) and spring-fall (March 22). As input data we take observed solar intensities (Ackerman [1]) and observed, critically evaluated. constants for elementary chemical and photochemical reactions; no adjustable parameters are employed. (These are not photochemical equilibrium calculations.) According to the Chapman model, the instantaneous, integrated, world-wide rate of formation of ozone from sunlight is about five times faster than the rate of ozone destruction, and locally (lower tropical stratosphere) the rate of ozone formation exceeds the rate of destruction by a factors as great as 1000. The global rates of increase of ozone are more than 50 times faster thanBrewer andWilson's [5] estimate of the average annual transfer rate of ozone to the troposphere. The rate constants of the Chapman reactions are believed to be well-enough known that it is highly improbable that these discrepancies are, due to erroneous rate constants. It is concluded that something else besides neutral oxygen species is very important in stratospheric ozone photochemistry. The inclusion of a uniform concentration of the oxides of nitrogen (NOx as, NO and NO2) averaging 6.6×10–9 mole fraction gives a balance between global ozone formation and destruction rates. The inclusion of a uniform mole fraction of NOx at 28×10–9 also gives a global balance. These calculations support the hypethesis (Crutzen [10],Johnston [24]) that the oxides of nitrogen are the most important factor in the global, natural ozone balance. Several authors have recently evaluated the natural source strength of NOx in the stratosphere; the projected fleets of supersonic transports would constitute an artificial source of NOx about equal to the natural value, thus promising more or less to double an active natural stratospheric ingredient.  相似文献   

5.
During solar cycle 21 (1976–86), the primary solar irradiance at 300 nm was steady during 1980–82 and thereafter decreased until 1986 by only 2–3%. The stratospheric ozone in middle latitudes had a QBO of 3–4% in this interval but the long-term ozone trend was less than 3% per decade, which could result in a UVB increase of only 5–6% per decade. Thus, the combined effect of changes in primary solar irradiance and ozone changes could be an increase of 5–6% in UVB, observed at ground during 1977–81 and a steady level during 1981–86. During 1976–86, the average cloudiness changed by less than 5% indicating UVB changes of 5% or less on this count. The aerosol level was almost constant during 1976–82 and increased abruptly in 1982 due to the E1 Chichon eruption and decayed slowly unitl 1986. Thus, due to aerosols only, the UVB was expected to be constant during 1976–82, to decrease sharply in 1982 and to recoup slowly thereafter.Measurements of clear-sky solar UVB at ground made at Jungfraujoch (Swiss Alps, 47°N, 8°E) during 1981–89 and at Rockville, USA (39°N, 77°W) were not comparable between themselves and did not follow the above expected patterns. Neither did the all-day R-B meter UVB measurements at Philadelphia, USA (40°N, 75°W) and Minneapolis, USA (45°N, 93°W). We suspect that some of these measurements are erroneous. This needs further detailed scrutiny.  相似文献   

6.
The global distribution of total ozone is derived for the period April, May, June and July of 1969 from Nimbus-3 Infrared Interferometer Spectrometer (IRIS) experiment. Preliminary estimates of ozone amounts from Nimbus-4 IRIS for the same period of 1970 show similar results. The standard error of estimation of total ozone from both IRIS experiments is 6% with respect to Dobson Spectrophotometer measurements. A systematic variation in the ozone distribution from April to July in the tropical, middle and polar latitudes is observed indicating the changes in the lower stratospheric circulation.The total ozone measurements show a strong correlation with the upper tropospheric geopotential height in the extratropical latitudes. From this relationship total ozone is used as a quasi-stream function to deduce geostrophic winds at the 200 mb level over extratropical regions of the northern and southern hemispheres. These winds reveal the subtropical and polar jet streams over the globe.Allied research associates.  相似文献   

7.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

8.
Using over 2200 ozonesonde ascents, published byHering andBorden [1]–[5] and byDütsch et al. [6], [7], the average vertical distribution of the ozone mixing ratio is found for different latitudes and for different seasons up to a height of 30 km. The method by which the ozone formed at great heights in low latitudes becomes concentrated in the lower stratosphere of high latitudes is discussed, and the meridional circulation theory is strongly suggested.Oxford, May 1972.  相似文献   

9.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

10.
A comparison of monthly mean values of total ozone at South Pole, Buenos Aires (Argentina), Cachoeira Paulista and Natal (Brazil), and Huancayo (Peru) revealed that whereas South Pole showed an ozone depletion of 45% in October 1987 (as compared to October, 1977), Buenos Aires showed a small decrease (10%) while the other locations showed very small decreases (1–2%). When daily values are considered, the Antarctic ozone hole of October 1987 seems to have caused 10% depletion at Buenos Aires and 5% at Natal and Huancayo in December 1987. However, a large part of this is normal seasonal variation, except at Huancayo, where a residual effect of 5% depletion in December 1987 remains. The QBO effects (5–8% changes in the ozone level in 2–3 years) could cause 10–15% fluctuations in solar UVB on the ground on clear-sky days and could be a possible health hazard unless factors like cloudiness reduce the UVB intensities.  相似文献   

11.
Fabian  P. 《Pure and Applied Geophysics》1973,106(1):1044-1057
Summary Based on the global distribution of various surface types the mean tropospheric residence time of ozone is estimated as a function of latitude. Due to the land-sea distribution varies from 50 days in the northern hemisphere to 190 days in the southern hemisphere. For the stratospheric-tropospheric exchange a sinusoidal variation with season is assumed. The annual variation of tropospheric ozone thus gets a sine function from mean, amplitude and phase of whch the injection function for the particular latitude can be determined.  相似文献   

12.
The spatial and temporal distribution of total ozone over India and its vertical distribution in theatmosphere during 1964–1969 was studied using Dobson spectrophotometer data at a network of six stations in India, Srinagar (34°N), New Delhi (28°N), Varanasi (24°N), Ahmedabad (23°N), Dum Dum (22°N), and Kodaikanal (10°N). The annual and seasonal variations show a clear phase-shift in the occurrence of the ozone maxima and minima as one proceeds from higher to lower latitudes in the tropics. In the northern stations (north of 25°N) the increase in total ozone during the course of the annual variation is caused by the fractional increase in all layers from the ground to 28 km, the main contribution coming from 10–24 km. Above 28 km the concentration changes roughly in accordance with photochemical production.In lower latitudes (south of 25°N) an increase in total ozone amount during the annual cycle is caused by a gradual increase in all the layers from the ground to 36 km above which the variation is negligible.  相似文献   

13.
The rocketsonde data obtained from the launchings made at Thumba (8°3215N, 76°5148E) during the winter period 1970–71, as already reported, have indicated that warmings of noticeable magnitude occurred at high levels (upper stratosphere and mesosphere) over this tropical station during the period mentioned. The mean monthly radiosonde temperatures of 50, 100 and 300 mb levels at Thumba (Trivandrum) and Delhi (28°35N, 77°12E) during the same period have also pointed out certain anomalies consistent with the warmings referred to above at Thumba. The radiosonde temperatures of the two stations, Thumba (Trivandrum) and Delhi, have now been examined, along with the values of total ozone, for the ten winter periods commencing from 1961–1962. The analysis has pointed out the possibility of high-level warmings also having occurred in the past over the Indian region during the winters of 1963–1964 and 1967–1968, which are also the periods when prominent warmings are definitely known to have occurred at higher latitudes. The behaviour of total ozone has been found to be different in the different years of the warmings. The features noticed have been presented and discussed.  相似文献   

14.
Examined are temperature and ozone variations in the Northern Hemisphere stratosphere during the period 1958–77, as estimated from radiosondes rocketsondes, ozonesondes, and Umkehr measurements. The temperature variation in the low tropical stratosphere is a combination of the variation associated with the quasi-biennial oscillation, and a variation nearly out of phase with the pronounced 3-yearly temperature oscillation (Southern Oscillation) present in the tropical troposphere since 1963. Based on radiosonde and rocketsonde data, the quasibiennial temperature oscillation can be traced as high as the stratopause, the phase varying with both height and latitude. However, the rocketsonde-derived temperature decrease of several degrees Celsius in the 25–55 km layer of the Western Hemisphere between 1969 (sunspot maximum) and 1976 (sunspot minimum) is not apparent in high-level radiosonde data, so that caution is advised with respect to a possible solar-terrestrial relation.There has been a strong quasi-biennial oscillation in ozone in the 8–16 km layer of the north polar region, with ozone minimum near the time of quasi-biennial west wind maximum at a height of 20 km in the tropics. A quasi-biennial oscillation in ozone (of similar phase) is also apparent from both ozonesonde data and Umkehr measurements in 8–16 and 16–24 km layers of north temperate latitudes, but not higher up. Both measurement techniques also suggest a slight overall ozone decrease in the same layers between 1969 and 1976, but no overall ozone change in the 24–32 km layer. Umkehr measurements indicate a significant 6–8% increase in ozone amount in all stratospheric layers between 1964 and 1970, and in 1977 the ozone amount in the 32–46 km layer was still 4% above average despite the predicted depletion due to fluorocarbon emissions. The decrease in ozone in the 32–46 km, layer of mid latitudes following the volcanic eruptions of Agung and Fuego is believed to be mostly fictitious and due to the bias introduced into the Umkehr technique by stratospheric aerosols of volcanic origin. Above-average water vapor amounts in the low stratosphere at Washington, DC, appear closely related to warm tropospheric temperatures in the tropics, presumably reflecting variations in strength of the Hadley circulation.  相似文献   

15.
The 22-year variation in the frequency of aurora occurrence is found through an analysis of data of the Russian network of meteorological stations from 1837–1909. This variation is obtained in a form of asymmetry between even and odd solar cycles. We found that the nature of the 22-year variation depends on the latitude of the observation station. The annual number N of midlatitude auroras (geomagnetic latitudes Φ < 56°) for about three years at the end of the descending part of solar cycles is larger for the even cycles than for the odd. For high-latitude auroras (Φ ≥ 56°), the pattern is opposite: at the descending part of the solar cycle, N is larger in the odd cycles than in the even. For the high-latitude sector, asymmetry of the polar sun cycles (the period between two magnetic field reversals) is clearly observed: an increased N is observed during the whole odd polar cycle (which starts approximately at the maximum of the odd Schwabe cycle) as compared to the even cycle. Extrapolation of the modern picture of alternation of the sign of the global solar magnetic field back in time leads to the conclusion that the most geoeffective polar cycles in cycles 8–14 were those in which the polar magnetic field in the northen hemisphere was negative.  相似文献   

16.
The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs) describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an –off-line mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%), while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs) as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species HCl and ClONO2 in spring have also been well reproduced by the model.  相似文献   

17.
A spectroscopic method for optical remote sensing of total ozone (O3) is described. It involves detailed spectral matching of near ultraviolet solar observations with synthetic profiles containing various amounts of ozone absorption. Application of this technique is made to airborne solar measurements in the 3100 to 3600 Å wavelength region. In the 3100 to 3200 Å region, measurements made above the tropopause (around geographic latitude 36.7°N, longitude 121.7°W at 0045 UT on 1/23/74) generally fit synthetic profiles constructed with 0.3 atm cm of O3 absorption andBroadfoot's (1972) extra-terrestrial solar irradiance values. However, there are several sections of the solar spectra where the observed intensity is either significantly higher or lower than the calculated value. In addition, several maxima and minima in the observed spectra do not coincide in wavelength with corresponding features in the synthetic profile. Such problems also appear when comparison is made with synthetic profiles based onArvesen et al.'s (1969) extra-terrestrial solar irradiance measurements. These discrepancies may arise from a combination of sources, including errors in laboratory measured O3 absorption coefficients, the extra-terrestrial solar irradiance values and the presence of other UV absorbing species in the stratosphere.  相似文献   

18.
Five ground-tilt stations were established on the flanks of the Soufriere of St. Vincent; two in 1977, two in 1980, and one in 1983. Four of these stations have survived; two consist of lines oriented radially to the volcano, and the other two consist of cross-shaped arrays. Collectively, this network showed that the volcano inflated gradually before the eruption of 1979 and then deflated rapidly during the eruption and for about a year after it had ended. The volcano then reinflated during much of 1981 and inflated only slightly, if at all, during the 7-year period 1982–1989. The measured amount of ground tilt from 1977 to 1989 was relatively small; the maximum recorded change of radial tilt at a station 6.5 km from the summit of the volcano totaled about 20 rad. Local seismicity correlates well with measured ground deformation: numerous earthquakes accompanied the 1979–1981 deflation/inflation cycle; relatively few earthquakes occurred during the 1982–1989 period of little or no ground deformation. In the hope that the experience we have gained might be of use to others who are considering a program of ground-tilt monitoring on volcanoes elsewhere in the humid tropics, we describe many practical aspects of our program that have evolved over the years. For example: (1) stainless steel bench marks cemented into solid bedrock appear to be stable for at least 12 years, (2) bench marks can be located in concrete-filled drums where bedrock is absent, (3) bench marks should be concealed to protect them from vandalism, (4) care must be exercised where sight lines graze the ground (<0.5 m), and (5) automatic levels are preferable because of their efficiency of operation, especially with inexperienced personnel.  相似文献   

19.
Summary In April 1970 the Backscatter Ultraviolet (BUV) experiment was placed into orbit aboard the Nimbus-4 satellite. This double monochromator experiment measures ultraviolet terrestrial radiance at twelve discrete wavelengths between 2550 Å and 3400 Å. Approximately 100 scans covering a 230 km square are made between terminator crossings on the daylight side of the earth. A colinear photometer channel with the same field of view is used to derive the Lambert reflectivity of the lower boundary of the scattering atmosphere. The extraterrestrial solar irradiance is measured at the northern terminator. The instrument has currently produced almost three years of nearly continuous data which are being used to infer the high-level ozone distribution and total ozone on a global basis. The high-level ozone data have been verified by independent coincident rocket ozone soundings, and the total ozone values show good agreement with Dobson spectrophotometer determinations as well as those made with the Infrared Interferometer Spectrometer also on Nimbus-4. An increase has been observed in equatorial radiance at 2550 Å relative to 2900 Å, which seems to indicate that the amount of ozone in the upper stratosphere is related to the eleven-year solar cycle.  相似文献   

20.
Summary Spectrometric experiments performed, in November 1976, within the framework of the Latitude Survey Mission on board the NASA Convair 990 from Ames Research Center are briefly deseribed. The results presented concern odd nitrogen molecules, HCl and water vapor. In terms of vertical column density, HNO3 is predominant over NO+NO2 at all latitudes higher than 40 degrees. A seasonal variation of NO2 abundance is observed, with larger values in the summer hemisphere at high latitude. The mean zenith column density of HCl above 11 km is 1.5×1015 mol.cm–2, with no evidence for any seasonal or climatic variation. Local number densities as high as 1.4×1010 mol.cm–3 for HNO3 and 5.4×1014 mol.cm–3 for water vapor have been measured during the same flight near 11 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号