首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

2.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

3.
毕云 《地球物理学报》2011,54(10):2468-2476
北极地区(60°N~90°N)平流层纬向风和气压场有明显的季节变化,不同高度层季节变化的时间有差异.北极平流层从冬至夏,季节转换从上向下推进,从夏至冬,季节转换从下向上推进.以20 hPa为例,平均而言,4月上旬以前,北极被极涡控制;4月中旬北极地区高压的势力开始超过低压,5月上旬,北极高压正式建立;7月份达到最强,8...  相似文献   

4.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

5.
Recent observations suggest that there may be a causal relationship between solar activity and the strength of the winter Northern Hemisphere circulation in the stratosphere. A three-dimensional model of the atmosphere between 10–140 km was developed to assess the influence of solar minimum and solar maximum conditions on the propagation of planetary waves and the subsequent changes to the circulation of the stratosphere. Ultraviolet heating in the middle atmosphere was kept constant in order to emphasise the importance of non-linear dynamical coupling. A realistic thermo-sphere was achieved by relaxing the upper layers to the MSIS-90 empirical temperature model. In the summer hemisphere, strong radiative damping prevents significant dynamical coupling from taking place. Within the dynamically controlled winter hemisphere, small perturbations are reinforced over long periods of time, resulting in systematic changes to the stratospheric circulation. The winter vortex was significantly weakened during solar maximum and western phase of the quasi-biennial oscillation, in accordance with reported 30 mb geopotential height and total ozone measurements.  相似文献   

6.
北极地区低平流层惯性重力波的观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
南极地区重力波活动有大量报道,相对而言,北极地区重力波的研究还很少.本文利用极区Ny-Alesund站点(78.9°N,11.9°E)无线电探空仪从2012年4月1日到2017年3月31日共5年的观测数据,统计分析了北极地区低平流层惯性重力波的特征.观测显示,月平均纬向风在20 km以下盛行东向风,再随着高度增加,逐渐呈现出半年振荡现象.对流层顶高度在5~13 km范围内变化,其月平均高度显示出年循环,最高出现在夏季,约为10 km,最低出现在冬季,约为8.5 km.对流层和低平流层月平均温度都显示出明显的年周期变化,这与中低纬度观测结果有所不同.结合Lomb-Scargle谱分析和矢端曲线方法,估算了准单色惯性重力波参数.个例研究表明,低平流层惯性重力波呈现出远离源区的自由传播性质.统计结果显示,惯性重力波的水平和垂直波长分别集中在50~450 km和1~4 km范围内,本征频率集中在1~2.5倍惯性频率间,这些值都比中低纬度观测值稍小.垂直方向本征相速度主要集中在-0.3~0 m·s-1,而纬向和经向本征相速度集中在-40~40 m·s-1之间.在5年的观测中,大约91.5%的惯性重力波向上传播.在冬季和早春,由于极地平流层极涡活动,激发出向下传播的惯性重力波,因此,向下传播的比例上升到相应月份的20%左右.由于低层大气盛行的东向风的滤波效应,低平流层大部分惯性重力波向西传播.波能量呈现出明显的年周期变化,最大值在冬季、最小值在夏季,与北半球中低纬度观测结果一致,表明北半球重力波活动普遍冬季强、夏季弱.  相似文献   

7.
Quasi-biennial oscillation (QBO) is a predominant phenomenon in the tropical stratosphere and troposphere. The possible interactions between the stratospheric QBO and tropospheric biennial oscillation (TBO) over the Indian monsoon region as well as the equatorial region is investigated using the zonal wind data of 23 vertical levels (1000–1 hpa) from 1960–2002. The structure of lower stratosphere and troposphere are entirely different over the equator and India. In biennial scales, both the stratosphere and troposphere over the Indian region are closely related and winter season QBO is a good predictor of Indian summer monsoon rainfall.  相似文献   

8.
The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs) describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an –off-line mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%), while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs) as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species HCl and ClONO2 in spring have also been well reproduced by the model.  相似文献   

9.
Observations of noctilucent clouds have revealed a surprising coupling between the winter stratosphere and the summer polar mesopause region. In spite of the great distance involved, this inter-hemispheric link has been suggested to be the principal reason for both the year-to-year variability and the hemispheric differences in the frequency of occurrence of these high-altitude clouds. In this study, we investigate the dynamical influence of the winter stratosphere on the summer mesosphere using simulations from the vertically extended version of the Canadian Middle Atmosphere Model (CMAM). We find that for both Northern and Southern Hemispheres, variability in the summer polar mesopause region from one year to another can be traced back to the planetary-wave flux entering the winter stratosphere. The teleconnection pattern is the same for both positive and negative wave-flux anomalies. Using a composite analysis to isolate the events, it is argued that the mechanism for inter-hemispheric coupling is a feedback between summer mesosphere gravity-wave drag (GWD) and zonal wind, which is induced by an anomaly in mesospheric cross-equatorial flow, the latter arising from the anomaly in winter hemisphere GWD induced by the anomaly in stratospheric conditions.  相似文献   

10.
Changes in solar ultraviolet flux produce changes in ozone concentration in the upper stratosphere with associated radiative and dynamical effects. At low latitudes, the response of ozone mixing ratio to solar UV variations on the time scale of the solar rotation period is well characterized observationally. In addition, there is some provisional evidence for an ozone response at intermediate periods of 60-80 days. Current two-dimensional stratospheric models simulate the observed 27-day response amplitudes and phase lags with reasonable accuracy in the upper stratosphere. The observed response of total ozone on the 27-day time scale is also in approximate agreement with the same models although observed ozone sensitivities and phase lags are slightly larger than expected theoretically. Future studies of the 27-day response at higher latitudes and altitudes are needed to test more completely our understanding of the direct effects of solar UV variability on the middle atmosphere.  相似文献   

11.
梁晨  薛向辉  陈廷娣 《地球物理学报》2014,57(11):3668-3678
本文利用2007年1月至2012年12月的COSMIC卫星温度剖线,从中提取了垂直波长在3~10 km的重力波扰动信息,进而分析了全球平流层大气重力波的分布特征.赤道地区低平流层重力波表现出明显的准两年变化,这种变化与风场的准两年变化具有明显的相关性,向下发展速度约为1 km/月;赤道地区高平流层(35 km以上区域)的重力波活动则存在明显的半年变化.中高纬度重力波活动主要表现为冬季强夏季弱.在南极地区存在着与急流的时间、空间以及强度变化密切相关的重力波分布特征,这说明在南极极夜急流是非常重要的一个重力波源;而在北极极夜急流的作用则没有那么强.此外,通过考察不同高度的重力波活动特征,我们发现:30 km以下重力波活动较强区域主要在赤道地区且与强对流区分布基本吻合,地形诱发的以及与天气系统相关的强重力波活动在该高度范围内同样出现;而在30 km以上的区域重力波活动强度分布则会出现与平流层爆发性增温以及极夜急流有关的变化.  相似文献   

12.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

13.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

14.
The northern annular mode (NAM) has been successfully used in several studies to understand the variability of the winter atmosphere and its modulation by solar activity. The variability of summer circulation can also be described by the leading empirical orthogonal function (EOF) of geopotential heights. We compare the annular modes of the summer geopotential heights in the northern hemisphere stratosphere and troposphere in the Goddard Institute for Space Studies (GISS) ModelE with those in the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both model and observation suggests that the summer stratosphere is more “summer-like” when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The temperature fluctuations in simulated solar minimum conditions are greater than in solar maximum throughout the summer stratosphere.The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum variability over the Asian monsoon region. The corresponding EOF in ModelE has a qualitatively similar structure but with less variability in the Asian monsoon region which is displaced eastward of its observed position. In both the NCEP/NCAR reanalysis and the GCM the negative anomalies associated with the NAM in the Euro-Atlantic and Aleutian island regions are enhanced in the solar minimum conditions, though the results are not statistically significant.  相似文献   

15.
The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007―2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between strato- spheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date―when the winter westerly at the core of polar jet turns to summer easterly―is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s?1 to about 15 m s?1. This is accompanied with anomalous activities of planetary waves in both strato- sphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s?1 to less than ?10 m s?1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical cou- pling of stratosphere and troposphere with the evolution of stratospheric polar vortex.  相似文献   

16.
Based on total ozone data from the World Ozone Data Center and stratospheric geopotential height data from the Meteorological Institute of Berlin Free University for the months of January through March for the time period of 1958–1996, the influence of the 11-year solar cycle and the equatorial quasi-biennial oscillation (QBO) on total ozone and the stratospheric circulation at 30 hPa over Northern Europe is investigated. The analysis is performed for different levels of solar activity. The relationship of the equatorial QBO with ozone and the stratospheric circulation over the study region exhibits unique features attributed to strong opposite connections between the equatorial zonal wind and ozone/stratospheric dynamics during periods of solar minimum and maximum. Using the Solar/QBO effect, a statistical extraction of the interannual variations of total ozone and stratospheric circulation over Northern Europe has been attempted. The variations extracted and observed for late winter show very good correspondence. The solar/QBO effect in total ozone and stratospheric dynamics over Northern Europe appears to be related to planetary wave activity.  相似文献   

17.
副热带急流对中国南部地区对流层中上层臭氧浓度的影响程度及地理范围目前还研究较少,且缺乏综合使用常规气象资料及卫星资料来判识对流层中上层臭氧浓度增高的方法.本文利用NCEP再分析与最终分析资料、日本GMS-5地球静止卫星水汽云图资料,以2001年3月27~29日中国南部的临安、昆明、香港臭氧探测个例为基础,结合1996年3月29日香港与2001年4月13日临安对流层中上层高浓度臭氧分布个例对副热带急流对中国南部对流层中上层臭氧浓度的影响进行了详细分析,提出根据气象要素场判识春季中国南部对流层中上层臭氧浓度增高的充分条件为根据卫星水汽图像上的暗区、高空急流入口区的左侧辐合区、高空锋区、对流层中上层≥1 PVU的向下伸展的舌状高位涡区来综合判断.本文的分析结果表明,本文个例中对流层中上层高浓度臭氧来自平流层;香港对流层中上层低浓度臭氧来自热带海洋地区.不仅臭氧垂直廓线的多个极小与极大值表明臭氧垂直分布的多尺度变化特征,而且对流层中上层PV分布以及卫星水汽图像分析也表明大气中的多尺度运动对臭氧垂直分布特征有显著影响.本文的结果表明与副热带高空急流相联系的平流层空气侵入不仅发生在中国大陆的较高纬度地区,较低纬度的昆明与香港地区也有平流层空气侵入导致对流层中上层臭氧浓度升高.  相似文献   

18.
The ozone winter maximum at high latitudes in the northern hemisphere is not evenly distributed along the longitudes. This is mainly due to the upper air circulation, both horizontally and vertically. In addition it is also strongly influenced by the largest mountain ranges. During the last two decades the air circulation in the North Atlantic has intensified. This has led to ascending motion in the upper troposphere and the lower stratosphere, which in turn has resulted in a reduced total ozone column in Northwest Europe.The large mounter ranges in Asia are initiating standing waves, with descending motions in the atmosphere behind the mountains. The descending motion leads to adiabatic warming of the lower stratosphere and the upper troposphere. Ozone-rich air is transported downwards to lower levels and stored there, where the ozone is less affected by heterogeneous chemical destruction.  相似文献   

19.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

20.
The search for a signal of the 11-year sunspot cycle in the heights and temperatures of the lower stratosphere was previously successfully conducted for the northern hemisphere with a data set from the Freie Universität Berlin, covering four solar cycles. This work has been extended to the whole globe by means of the NCEP/NCAR reanalyses for the period 1968–1996. The re-analyses show that the signal exists in the southern hemisphere too, and that it is of nearly the same size and shape as on the northern hemisphere. The NCEP/NCAR reanalyses yield higher correlations with the solar cycle than do the Berlin analyses for the same period, because the interannual variability is lower in the NCEP/NCAR data.The correlations between the solar cycle and the zonally averaged temperatures at the standard levels between 200 and 10 hPa are largest between the tropopause and the 25 km level, that is, in the ozone layer. This may be partly a direct effect in this layer, because of more absorber (ozone) and more ultraviolet radiation from the sun in the peaks of the 11-year solar cycle. However, it is more likely to be mainly an indirect dynamical consequence of UV absorption by ozone in the middle and upper stratosphere.The largest temperature correlations move with the sun from one summer hemisphere to the other, and the largest height correlations move poleward from winter to summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号