首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用ERA-Interim再分析资料、卫星资料以及轨迹模式,对2010年6月19-23日东亚夏季一次典型切断低压(COL)过程中的动力、热力及化学结构进行了分析,并详细分析了平流层空气深入侵过程和路径.AIRS臭氧资料与臭氧探空资料分析表明,在COL发展成熟阶段,由极区高位势涡度、高臭氧库区脱离出来的空气在COL的中心形成一个局地高位势涡度与高臭氧浓度区域,并在对流层中上部出现臭氧次峰结构.前向轨迹模式模拟结果表明:COL形成前期,高空槽加深,槽后偏北风急流可以引起极区下平流层空气向中纬度对流层中低层侵入,从而使对流层中低层臭氧浓度升高;COL发展成熟阶段,可以引起平流层空气的"旋转式"入侵.最后,应用后向轨迹模式对成熟阶段COL内部及周围空气块源地做进一步模拟分析.结果表明:(1)COL中心高浓度臭氧空气块源地有两个,一是中西伯利亚北部上空的副极地涡旋,这部分气块对COL中心的高臭氧浓度起主要作用;二是90°E以西,50°N附近的温带急流轴左侧的气旋式风速切变区.(2)COL周围低臭氧浓度的气块源地也有两个,一是COL底部臭氧浓度相对较低的空气块主要来自急流轴右侧反气旋式风速切变区,以平流运动为主;二是COL前部及后部的空气块主要来自COL南侧低层暖区,以上升运动为主.  相似文献   

2.
根据Aura卫星微波临边探测(MLS)2.2,3.3版水汽和臭氧廓线,采用线性内插方法,将夏季在青藏高原(西藏的那曲和拉萨)及其周边地区(云南腾冲)通过冷冻霜点仪(CFH)和电化学反应池型(ECC)探空仪分别测得的水汽和臭氧数据插值到与卫星产品规定的气压高度进行比较分析,以检验MLS水汽和臭氧廓线产品.结果表明:MLS 2.2和3.3版水汽相对误差在100 h Pa的对流层顶附近分别为(9.8±46.0)%(n=18),(23.0±45.8)%(n=17);在小于并包含82.5h Pa在内的下平流层则分别为(-2.2±15.7)%(n=74),(0.3±14.9)%(n=75);而在对流层316~121h Pa高度则分别为(21.5±90.6)%(n=104),(6.0±83.4)%(n=99).相应MLS 2.2,3.3版臭氧的误差分别为:(-3.5±54.4)%(n=27),(-8.7±41.6)%(n=38)(100 h Pa);(-11.7±16.3)%(n=135),(15.6±24.2)%(n=305)(下平流层);(18.0±79.1)%(n=47),(34.2±76.6)%(n=160)(对流层上层).MLS水汽和臭氧的误差垂直分布在对流层上层-平流层低层振荡和离散分布明显,部分误差可能由于此高度层水汽和臭氧浓度梯度大和比较用线性插值探空数据引起."臭氧低谷"期间,拉萨地区70 h Pa高度以下MLS卫星臭氧浓度误差明显增加;腾冲、那曲与拉萨三地的MLS臭氧误差的垂直分布特征较一致.卫星产品与探空测值的初步关系表明,MLS廓线的灵敏度与水汽和臭氧在大气中垂直分布有密切联系,3.3版水汽产品的灵敏度在82.5 h Pa以上高度略有提高,臭氧产品灵敏度没有明显变化.文中还讨论了导致MLS水汽和臭氧廓线产品误差的可能因素.  相似文献   

3.
采用Cloudsat/CPR云雷达,FY2C/TBB亮温,Aura/MLS大气成分等卫星遥感资料,结合ECMWF气象分析资料和HYSPLIT4轨迹模式,研究了2009年6月一次东亚切断低压的暖区深对流和异常副热带锋面的结构和演变.分析表明,由于低压切断前的旧槽背景,在低涡的近成熟期,内部冷、暖锋降水偏弱,边沿的高空副热带锋面异常发展到对流层底部,低空西南暖湿水汽在副热带锋前聚集,形成千公里长的暖区深对流降水带.随着该锋面的快速东移,副热带锋区进入原暖区雨带,锋区热力间接次级环流的强上升支,加强了锋下冷侧(原暖湿区)的深对流,但该锋面阻挡了来自暖侧的水汽补充,降水结束.该异常副热带锋区还发生了强烈的平流层-对流层相互交换,在高空急流出口区的下方,平流层1.5PVU等位涡线向下入侵可达5.5 km(约500 hPa)处,锋下向上的深对流注入可达10 km,在入侵-注入混合区,臭氧和水汽的散点图上出现了二者浓度双高和双低的特殊气团.  相似文献   

4.
采用Cloudsat/CPR云雷达,FY2C/TBB亮温,Aura/MLS大气成分等卫星遥感资料,结合ECMWF气象分析资料和HYSPLIT4轨迹模式,研究了2009年6月一次东亚切断低压的暖区深对流和异常副热带锋面的结构和演变.分析表明,由于低压切断前的旧槽背景,在低涡的近成熟期,内部冷、暖锋降水偏弱,边沿的高空副热带锋面异常发展到对流层底部,低空西南暖湿水汽在副热带锋前聚集,形成千公里长的暖区深对流降水带.随着该锋面的快速东移,副热带锋区进入原暖区雨带,锋区热力间接次级环流的强上升支,加强了锋下冷侧(原暖湿区)的深对流,但该锋面阻挡了来自暖侧的水汽补充,降水结束.该异常副热带锋区还发生了强烈的平流层-对流层相互交换,在高空急流出口区的下方,平流层1.5PVU等位涡线向下入侵可达5.5km(约500hPa)处,锋下向上的深对流注入可达10km,在入侵-注入混合区,臭氧和水汽的散点图上出现了二者浓度双高和双低的特殊气团.  相似文献   

5.
利用1979~1992年卫星TOR对流层臭氧数据库资料,以及同期太阳辐照度数据序列,考察青藏高原对流层臭氧含量变化与太阳辐射周期变化之间的关系.分析表明,青藏高原对流层臭氧分布表现出与太阳辐照度相同的变化趋势,存在着明显的太阳周期变化特征.逐月线性回归分析表明,太阳辐照度增加导致青藏高原对流层臭氧增加的正效应.在太阳周期内,太阳辐射增加可使青藏高原对流层臭氧、平流层臭氧和臭氧总量分别增加1.31、4.97、6.628DU,或4.07%、2.04%、2.28%.该特征与赤道太平洋地区完全相反,分析产生差异的原因,至少应包括两方面因素:一是背景大气NOX和水汽含量的差异;二是青藏高原频繁发生的平流层-对流层大气物质交换和输送.  相似文献   

6.
2001年3月7日与8日在香港与昆明用电化学臭氧探空仪探测到了对流层低层异常的高浓度臭氧分布. 本文使用NCEP(美国环境预报中心)分析资料、中尺度数值模式MM5模拟的大气环流数据、卫星观测的东南亚地区的生物体燃烧状况、气溶胶指数等资料,分析了这段时间的天气形势、大气环流、空气的后向轨迹以及生物体燃烧产生的烟尘的轨迹,结果发现高浓度的臭氧空气来源于有生物体燃烧的中南半岛地区. 燃烧烟尘的轨迹还表明生物体燃烧地区的下风方的对流层低层臭氧的分布会受到上游地区生物体燃烧产物的影响.  相似文献   

7.
南极大气臭氧和温度垂直结构及其季节变化的研究   总被引:1,自引:0,他引:1  
利用南极中山站2008年2月至2009年2月臭氧和温度探空等资料,对中山站上空大气臭氧和温度的垂直结构及季节变化特征进行了研究.结果表明,在中山站上空热对流层顶和臭氧对流层顶的高度相近,年平均高度分别为7.9和7.4km.对流层顶的气压和温度都存在位相相反一波型季节变化.春季和冬季对流层顶的温度转折没有夏季和秋季明显,而依据臭氧变化恰能更好地确定对流层顶高度.在对流层臭氧垂直分布的季节变化不显著;而平流层却十分明显.春季下平流层臭氧严重耗损,14km处的臭氧最小分压仅为1.57MPa,最大分压出现在上平流层,其他季节下平流层臭氧随高度增加而升高.春季下平流层臭氧的严重损耗,与极夜过后低温条件和平流层冰晶云表面消耗臭氧的光化学过程有密切关系.大气臭氧和温度的垂直结构及季节变化特征,对春季南极臭氧洞的形成和发展具有重要意义.  相似文献   

8.
占瑞芬  李建平 《地球物理学报》2012,55(10):3181-3193
亚洲地区是物质由对流层向平流层输送的主要通道,在平流层-对流层交换中扮演着积极的角色. 本文主要利用卫星资料和欧洲中心ERA40再分析资料,借助Wei诊断模式研究亚洲地区夏季上对流层-下平流层(UTLS)水汽分布和平流层-对流层水汽交换特征,重点着眼于水汽交换的年际变化,并探讨其与亚洲夏季风的联系. 结果表明,季风区UTLS水汽较赤道地区偏多,且通过磁带记录信号的传播,可穿越对流层顶影响下平流层水汽的多寡. 夏季平流层-对流层水汽交换表现出明显的年际特征,其年际变化与亚洲季风强弱变化有密切联系,尤其与南亚夏季风的关系更为显著. 在亚洲夏季风影响下,亚洲地区出现异常的大气环流和垂直运动,从而影响平流层-对流层之间水汽的交换. 这些结果对认识其它大气成分的输送过程也具有重要的指示意义.  相似文献   

9.
长江三角洲地区春季低空大气臭氧垂直分布特征   总被引:6,自引:0,他引:6  
介绍分析了2001年3月3日~4月13日浙江临安臭氧探空观测5 km以下臭氧垂直分布特征. 结果表明, 臭氧浓度垂直分布与湿球位温、风场有密切的关系. 臭氧浓度在2 km以下变化幅度很大, 明显的东风分量伴随臭氧高值. 5 km以下臭氧垂直分布可以分为峰值型、均匀型、分层结构型、低空污染型和线性增长型5个基本类型. 此外, 还分析了3种情形下区域尺度输送对低空污染型臭氧分布的影响.  相似文献   

10.
本文利用2013年6月至2015年10月北京南苑观象台两年多午后臭氧探空资料,初步分析了北京城区大气混合层内臭氧浓度的垂直分布规律以及典型天气条件下大气边界层臭氧的变化特征.主要结果有:(1)季节平均而言,地表至对流层中部(8 km)的臭氧浓度在夏季最高,冬季最低,相差50~130 μg·m-3,最大差异在边界层.总体而言,对流层臭氧浓度随高度有比较缓慢的增加,但是边界层内臭氧浓度的垂直结构随季节有比较大的差异:夏季混合层中部存在一个臭氧浓度极大值,这与夏季比较强的光化学生成臭氧有关;而在冬季地面臭氧浓度很低,平均值小于40 μg·m-3,说明冬季地面是臭氧很强的汇.(2)臭氧浓度季节内变率的季节差异也十分明显,夏季最大、冬季最小.季节内变率在从边界层向自由对流层过渡区域最小(夏季为24 μg·m-3,冬季仅为10 μg·m-3),在边界层内变率较大,夏季可达64 μg·m-3(冬季为30 μg·m-3),这也说明边界层化学过程明显影响臭氧浓度的变化.(3)我们从所有白天样本中严格筛选了部分混合层样本,并把臭氧浓度在由混合层向自由大气过渡时的垂直分布分成了三类,即臭氧浓度随高度增大(Ⅰ型)、减小(Ⅱ型)以及基本稳定不变(Ⅲ型);臭氧垂直结构类型有明显的季节特征,夏季主要是Ⅱ型,而冬季则以Ⅰ型为主.(4)此外,我们还针对一些典型天气过程(强风、静稳雾天和PM2.5污染)边界层内臭氧的变化特征进行了分析,结果表明:强风切变产生的机械对流引起的充分混合,有利于高层臭氧向低层输送,使得混合层内臭氧浓度的垂直梯度明显减小,同时混合层高度较高,达3 km以上;在高湿度静稳天气控制下,大气混合层较稳定,对北京上空污染物的垂直扩散十分不利:颗粒物浓度升高,削弱到达近地层的太阳辐射,从而降低臭氧的生成效率,混合层内臭氧浓度与混合层厚度都处于较低水平.  相似文献   

11.
利用1958~2001年共44年的ECMWF资料及参数化方法,计算了对流层顶上、下3 km气层间的臭氧含量及其吸收太阳辐射加热率的时空分布.结果表明: (1) 臭氧分布的空间梯度从赤道指向两极,而加热率则是分别由高纬和低纬指向副热带,这样的经向梯度可能是驱动对流层顶结构变化的一种重要因素;两者空间分布的季节变化显著,但其对应关系并不完全一致,1月和4月的空间结构与7月和10月的相反,随季节调整具有突变现象;东亚及青藏高原是季节变化相对稳定的区域.(2) 在热带对流层顶控制区加热率与臭氧含量呈正相关,而极地对流层顶控制区各季节有所不同,还与太阳赤纬变化相关联;各纬度间加热率季节变化的位相和变率都存在差异,但南半球相对较为一致,最大距平为±2×10-4 K·d-1,北半球则较复杂,最大正距平为4×1010-4 K·d-1;两半球的季节周期位相趋于相反.(3) 除赤道外,臭氧距平的季节变化位相超前于加热率距平2~3月,并且发生在季节变化的调整期;最大距平出现在南极的8月大于0.4 DU,3~4月则小于-0.2 DU,而北极为±0.2 DU.(4) 臭氧含量和加热率的年际与年代际演变关系对应一致,并具有多尺度的结构特征;但两半球及赤道的时空演变差异明显,30° S~30° N间副热带控制区的加热率变幅剧烈,最大距平为±2.5×10-4 K·d-1,高纬和两极的变幅在不同演变期各不相同;臭氧的变幅结构与之相反,北极的最大距平分别大于0.25 DU和小于-0.35 DU.(5) 20世纪70年代以前及70年代中期,两半球的正负距平具有相反的演变结构,而90年代是负距平演变最剧烈的时期.  相似文献   

12.
Evaluations of radiosonde soundings over North America and Europe, measurements aboard commercial airlines, and permanent ozone registrations at nineteen ground-based stations between Tromsö, Norway, and Hermanus, South Africa, yield three belts of higher ozone intrusion from the stratosphera and maximum values of the annual means at about 30°N, at between 40°–45°N and at about 60°N. A marked decrease of the annual mean values of the tropospheric ozone is detected towards the equator and the pole, respectively.In the northen hemisphere the maximum of the annual cycle of the tropospheric ozone concentration occurs in spring at high latitudes and in summer at mid-latitudes.For the tropical region from 30°S to 30°N a strong asymmetry of the northern and southern hemisphere occurs. This fact is discussed in detail. The higher troposphere of the tropics seems to be a wellmixed reservoir and mainly supplied with ozone from the tropopause gap region in the northern hemisphere. The ozone distribution in the lower troposphere of the whole tropics seems to be controlled by the up and down movements of the Hadley cell. The features of large-scale and seasonal variation of tropospheric ozone are discussed in connection with the ozone circulation in the stratosphere, the dynamic processes near the tropopause and the destruction rate at the earth's surface.  相似文献   

13.
A study is presented of a possible correlation between ozone and Aitken nuclei concentration measured between 6 km and 19 km by the instruments installed on the WB-57F aircraft. Samples were taken between 48°N and 9°S latitudes over the U.S., the Gulf of Mexico, and Central and South America between March 1974 and February 1975.A weak negative correlation between AN and ozone concentrations was found at altitudes higher than the tropical tropopause. Scattering of the signs and magnitudes of correlation coefficients was found below the tropopause. Largest variations of the coefficient values were related to the stratospheric pollution following the eruption of the Guatemalan volcano Fuego.  相似文献   

14.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

15.
Mani  A.  Sreedharan  C. R.  Joseph  P. V.  Sinha  S. S. 《Pure and Applied Geophysics》1973,106(1):1192-1199
A series of ozone soundings were made at New Delhi (77°E 28°N) from 21 to 30 January 1969 and 10 to 22 February 1972 to study the changes in the vertical distribution of atmospheric ozone associated with western disturbances. The sonde used was the Indian ozonesonde made in the Instruments Laboratories at Poona.In February 1972, two western disturbances moved eastwards in quick succession across the western Himalayas, the first between the 11th and 13th and the second between the 13th and 15th. Associated with the first tropospheric trough was a high-speed jet stream with wind speeds reaching 180 knots, when the tropopause descended to 304 mb over Delhi. The second trough had no high-speed jet associated with it and the tropopause was at 227 mb. Ozone maxima were observed at 350, 180 and 125 mb in addition to the main peak at 35 mb in association with the upper tropospheric troughs over Delhi and its neighbourhood. A similar lowering of the tropopause and the influx of ozone in shallow layers was observed during the passage of two upper air troughs in January 1969. The study shows that with the approach of upper tropospheric troughs and the simultaneous lowering of the tropopause there is an increased influx in shallow layers of middle latitude ozone-rich air through breaks in the tropopause, replacing the subropical ozone-poor air over the station.  相似文献   

16.
Total ozone data from some European stations have been analyzed to detect the ozone decrease in different seasons from 1979 to 1995. The differences between the winter–spring (December–March) and summer (May–August) total ozone means have decreased distinctly during the last three decades, by 10 Dobson Units per decade, showing that the winter–spring decrease is significantly stronger than the summer one. Applying a multiple regression model to the monthly means of tropopause height, positive trends in the summer and winter–spring seasons have been found, especially since 1979. This corresponds to the accelerating ozone decrease then. The possibility of using tropopause height variations as an indicator of dynamical variability in the total ozone trend model is discussed. The total ozone response to the changes of tropopause height seems to be independent of timescale over which the tropopause-total ozone relationship has been examined (month-to-month, interannual). The total ozone trends, as well as the accelerated rate of ozone decrease since 1979 in the winter–spring and summer seasons, respectively, are reduced by about 0.5–1% per decade after inclusion of the tropopause height effect on the ozone model.  相似文献   

17.
Aboard commercial airliners twenty registrations of the ozone concentration of the upper troposphere were carried out within a period of 14 months between Europe and South Africa. Nearly each of these meridional ozone profiles shows an approximately constant ozone content between 25°S and 25°N with a pronounced seasonal variation. Most of these profiles show two marked peaks of the ozone concentration at about 30°N and between 40° and 45°N. Though the number of these registrations is not sufficient for statistical computations, the first results confirm the meridional ozone distribution, which was expected from studies with ozone-radiosonde soundings. Moreover a strong asymmetry of the northern and southern hemisphere is confirmed by these ozone measurements.  相似文献   

18.
The National Center for the Atmospheric Research (NCAR) middle atmospheric model is used to study the effects of the quasi-biennial oscillation in the stratosphere (QBO) on the tropopause and uppe troposphere, and the relationship between the QBO and South China Sea Summer Monsoon (SCSSM is explored through NCEP (the National Centers for Environmental Prediction)/NCAR, ECMWF (Euro pean Centre for Medium-Range Weather Forecasts) monthly mean wind data and in situ sounding data The simulations show that the QBO-induced residual circulations propagate downwards, and affect the tropopause and upper troposphere during the periods of mid-late QBO phase and phase transition Meanwhile, diagnostic analyses indicate that anomalous circulation similar to SCSSM circulation is generated to strengthen the SCSSM during the easterly phase and anomalous Hadley-like circulation weakens the SCSSM during the westerly. Though the QBO has effects on the SCSSM by meridiona circulation, it is not a sole mechanism on the SCSSM TBO mode.  相似文献   

19.
We present validation studies of MLS V2.2 and V3.3 water vapor(WV) and ozone profiles over the Tibetan Plateau(Naqu and Lhasa) and its adjacent region(Tengchong) respectively by using the balloon-borne Cryogenic Frost point Hygrometer and Electrochemical Concentration Cell ozonesonde. Coincident in situ measurements were selected to compare the MLS V2.2 and V3.3 WV and ozone profiles for understanding the applicability of the two version MLS products over the region. MLS V2.2 and V3.3 WV profiles respectively show their differences within ?2.2±15.7%(n=74) and 0.3±14.9%(n=75) in the stratosphere at and above 82.5 h Pa. Accordingly, at 100 h Pa, the altitude approaching the tropopuase height, differences are within 9.8± 46.0%(n=18) and 23.0±45.8%(n=17), and they are within 21.5±90.6%(n=104) and 6.0±83.4%(n=99) in upper troposphere. The differences of MLS ozone are within ?11.7±16.3%(n=135, V2.2) and 15.6±24.2%(n=305, V3.3) at and above 82.5 h Pa. At 100 h Pa, they are within ?3.5±54.4%(n=27) and ?8.7±41.6%(n=38), and within 18.0±79.1%(n=47) and 34.2±76.6%(n=160) in the upper troposphere. The relative difference of MLS WV and ozone profile has significant oscillation and scatter at upper troposphere and lower stratosphere partly due to the stronger gradients of WV and ozone concentrations here as well the linear interpolation of sonde data for the intercomparison. At and below 70 h Pa, the relative differences of MLS ozone are significantly larger over Lhasa during the Tibetan Plateau "ozone valley" season, which is also the Asian Summer Monsoon period. The MLS ozone differences over the three sites are similar in their vertical distributions during that period. A simple linear correlation analysis between MLS and sonde profiles indicates that the sensitivity of MLS profile products is related to concentrations at each pressure level. The MLS V3.3 product sensitivity is slightly improved for WV at and above 82.5 h Pa, whereas it is not obvious for ozone. The possible factors contributing to the differences of the MLS profile products of WV and ozone are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号