首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought analysis in Jordan under current and future climates   总被引:2,自引:0,他引:2  
Droughts have adverse socioeconomic, agricultural, and environmental impacts that can be reduced by assessing and forecasting drought behavior. The paper presents detailed analyses of both meteorological and vegetative droughts over the period from 1970 to 2005. Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) have been used to quantify drought according to severity, magnitude and spatial distribution at the Hashemite Kingdom of Jordan. Results suggest that the country faced during the past 35 years frequent non-uniform drought periods in an irregular repetitive manner. Drought severity, magnitudes and life span increased with time from normal to extreme levels especially at last decade reaching magnitudes of more than 4. Generated NDVI maps spatial analyses estimate crop-area percentage damage due to severe and extremely severe drought events occurred during October, December, and February of 2000 to be about 10%, 45%, and 30%, respectively. In response to drought spatial extent, the paper suggest the presence of two drought types, local drought acting on one or more geographical climatic parts and national drought, of less common but more severe, that extend over the whole country. Droughts in Jordan act intensively during January, February and March and tend to shift position with time by alternative migrations from southern desert parts to northern desert parts and from the eastern desert parts to highlands and Jordan Rift Valley (JRV) at the west. The paper also investigates the potential use of Global Climate Model’s (GCM) to forecast future drought events from 2010 till 2040. Tukey HSD test indicates that ECHAM5OM GCM is capable to predicted rainfall variation at the country and suggests future droughts to become more intensive at the northern and southern desserts with 15% rainfall reduction factor, followed by 10% reduction at the JRV, and 5% at the highlands.  相似文献   

2.
基于CMIP5中的5个全球气候模式统计降尺度的降水、最高和最低气温等数据,利用标准降水蒸发指数(SPEI)和强度-面积-持续时间(IAD)方法识别全球升温1.5℃与2.0℃情景下中亚地区干旱事件,结合30 m分辨率土地利用数据,探讨中亚干旱事件的演变及耕地暴露度变化。结果表明:相比基准期(1986—2005年),中亚地区的降水和潜在蒸发量均有所增加;全球升温1.5℃与2.0℃情景下,中亚地区的干旱事件频次、强度和面积均将增加,其中重旱和极旱事件的频次和影响面积大幅上升,而中旱事件的频次和影响面积持续下降;1986—2005年中亚地区年均干旱耕地暴露度约11.5万km2,全球升温1.5℃和2.0℃情景下,干旱耕地暴露度将分别上升到17.9万km2和28.6万km2,且暴露在极旱下的耕地面积增加最明显。全球升温1.5℃与2.0℃情景下,增加的干旱事件将会严重威胁当地农业生产和粮食安全,中亚地区需对干旱事件采取长期的减缓与适应措施。  相似文献   

3.
The likely intensification of extreme droughts from climate change in many regions across the United States has increased interest amongst researchers and water managers to understand not only the magnitude of drought impacts and their consequences on water resources, but also what they can do to prevent, respond to, and adapt to these impacts. Building and mobilizing ‘adaptive capacity’ can help in this pursuit. Researchers anticipate that drought preparedness measures will increase adaptive capacity, but there has been minimal testing of this and other assumptions about the governance and institutional determinants of adaptive capacity. This paper draws from recent extreme droughts in Arizona and Georgia to empirically assess adaptive capacity across spatial and temporal scales. It combines quantitative and qualitative methodologies to identify a handful of heuristics for increasing adaptive capacity of water management to extreme droughts and climate change, and also highlights potential tradeoffs in building and mobilizing adaptive capacity across space and time.  相似文献   

4.
利用湖南97个气象观测站逐日综合气象干旱指数、逐日降水量和湖南天气气候分区,研究湖南极端干旱特征和极端干旱时段内人工影响天气增雨潜力,结果表明:①湖南极端干旱期有相当的增雨潜力,各个分区的极端干旱频次和大气可降水量年代际变化除70年代外均呈现为北少南多的特点。②极端干旱时段内各分区年均可增雨日数主要表现为月际差异,可增雨日数主要集中在8—10月,各分区区域差异较小,各分区在伏旱期的可增雨日数大约占伏旱期的16%~20%。③湖南极端干旱按照出现的季节分类有11种,频次最高的是夏秋连旱,同时夏秋连旱的可增雨日数最多。  相似文献   

5.
Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the clustering extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961-2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autumn-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.  相似文献   

6.
曲学斌 《气象科技》2015,43(1):103-107
利用呼伦贝尔市16个气象台站1973—2012年逐日气象观测资料,计算4—10月生长季期间逐日CI指数并统计分析呼伦贝尔市生长季气象干旱强度特征,利用空间差值、线性回归、信噪比检验、M K突变检验和小波分析方法对干旱强度的空间分布、随时间的变化、突变发生情况及气象干旱发生周期进行分析。分析表明,呼伦贝尔市气象干旱发生频率最高为牧区,强度由西南牧区向东北林区递减,春季气象干旱有减轻趋势,而夏、秋季节干旱有加重趋势,牧区秋旱的加重趋势尤为显著,农区的变化周期较长,为19~24年,而林区、牧区的变化周期较短,为5~12年和7~12年。  相似文献   

7.
Severe droughts have affected much of Europe over the last 40 years. A limitation to current understanding of droughts is based around drought characteristics (e.g. frequency, severity and duration) as there are limited long series (>100 years) with well documented severe droughts. This is further complicated with future climate projections, and the potential implications that these will have on drought characteristics. This paper presents reconstructed drought series from 1697, 1726 and 1767 to 2011 for three sites in southeast England. Precipitation and temperature series are reconstructed to generate long drought series using the self-calibrated Palmer Drought Severity Index, enabling determination of drought characteristics. The reconstructions identify multiple drought-rich periods, 1730–1760 and 1890-present, with an increasing tendency towards more severe droughts during the latter period. Prolonged rainfall deficiencies are found to be the primary cause of severe droughts, with rising temperatures increasing soil moisture deficit, therefore intensifying drought conditions. Cycles at the 6–10 year period identify a sub-decadal to decadal signal during drought-rich periods. Analysis of the spatial variability of droughts finds that whilst severe events are predominantly regionally coherent, there are notable variations in severity and duration between sites, which are attributed to localised rainfall variability. This study extends the temporal range of previous drought studies and places recent drought events in a longer context improving upon existing ‘benchmark’ drought analyses in southeast England; with far-reaching implications for local, national and continental scale reduction of drought vulnerability and risk.  相似文献   

8.
Summary The dominant climatic mode responsible for seasonal rainfall variability across central southern Africa has been well-established as ENSO. Hence, the El Ni?o signal of the equatorial Pacific has been used extensively to predict droughts in this sub-region. Although this paper acknowledges that El Ni?o influences rainfall deficits over eastern southern Africa, an earlier signal of extreme positive sea level pressure (SLP) anomalies at Darwin for the averaged March to June period (MAMJ Darwin) has proved to have a superior remote connection to droughts in the sub-region. Simple linear statistical tools including composite techniques and correlation methods have been employed on century long data sets (1901–2000) to identify the emerging paramount connection between MAMJ Darwin SLP anomalies and southern African rainfall. Both MAMJ Darwin SLP anomalies and the Zimbabwe seasonal rainfall time series are significantly correlated (above the 95% significant level) with sea surface temperature anomalies. These represent the Indian Ocean Dipole mode in the tropical Indian Ocean and ENSO in the tropical Pacific for the averaged September to December period. ‘Pure’ MAMJ Darwin (that occur in the absence of El Ni?o in the Pacific) coincide with droughts more significantly (83% hit rate) than ‘pure’ El Ni?o events (not preceded by a high MAMJ Darwin) (38% hit rate). Co-occurrences (MAMJ Darwin preceded by El Ni?o) do not only have the highest hit rate of 93% but subsequent droughts are noticeably more severe. The ‘pure’ El Ni?os however, are not only poorly related to Zimbabwe seasonal rainfall deficits, but are apparently not connected to extreme droughts of the 20th century. Thus, MAMJ Darwin is a good simple predictor of droughts associated with or without ENSO in the Pacific. The high prediction skill of these results, especially the inherent longer lead-time than ENSO, makes MAMJ Darwin SLP anomalies an ideal additional input candidate for sub-regional drought monitoring and forecasting schemes. In this way, drought early warning and disaster preparedness activities can be enhanced over the sub-region. Authors’ addresses: D. Manatsa, W. Chingombe, H. Matsikwa, Faculty of Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe; C. H. Matarira, Department of Geography and Environmental Science, National University of Lesotho, Roma 180, Lesotho.  相似文献   

9.
Tree-ring reconstructed summer Palmer Drought Severity Indices (PDSI) are used to identify decadal droughts more severe and prolonged than any witnessed during the instrumental period. These “megadroughts” are identified at two spatial scales, the North American continental scale (exclusive of Alaska and boreal Canada) and at the sub-continental scale over western North America. Intense decadal droughts have had significant environmental and socioeconomic impacts, as is illustrated with historical information. Only one prolonged continent-wide megadrought during the past 500 years exceeded the decadal droughts witnessed during the instrumental period, but three megadroughts occurred over the western sector of North America from a.d. 1300 to 1900. The early 20th century pluvial appears to have been unmatched at either the continental or sub-continental scale during the past 500 to 700 years. The decadal droughts of the 20th century, and the reconstructed megadroughts during the six previous centuries, all covered large sectors of western North America and in some cases extended into the eastern United States. All of these persistent decadal droughts included shorter duration cells of regional drought (sub-decadal  ≈  6 years), most of which resemble the regional patterns of drought identified with monthly and annual data during the 20th century. These well-known regional drought patterns are also characterized by unique monthly precipitation climatologies. Intense sub-decadal drought shifted among these drought regions during the modern and reconstructed multi-year droughts, which prolonged large-scale drought and resulted in the regimes of megadrought.  相似文献   

10.
Analysis of meteorological drought episodes in Paraguay   总被引:3,自引:0,他引:3  
This paper analyzes the meteorological drought events in Paraguay in the period of 1964 to 2011, using the Standardized Precipitation Index (SPI). The objective is to determine if the frequency and/or severity of droughts has increased or decreased in the last years, in response of climate change. They The southernmost parts of the country are affected by severe droughts producing damage to soybean and corn crop during the rainy season (October–March) especially during the summer of 2008–2009. The years of 1967, 1968, 1978, 1979, 2000 and 2008 was identified as severe to extreme drought events and coincides with La Niña event. However, the relationship between all drought events, especially those agricultural droughts and La Niña is not clear, suggesting the necessity of new research, focusing on new drivers to explain the cause of the droughts. The economy of Paraguay, based for good part on agriculture, is clearly vulnerable to droughts. Even though no undeniable increasing trend in drought frequency/severity was detected, contingency plans to diminish drought impacts ought to be elaborated.  相似文献   

11.
利用河南省24个地面气象站1961-2009年逐日降水和气温资料计算SPEI(标准化降水蒸散指数),并按照SPEI的标准界值将干旱强度划分为轻度干旱、中度干旱和极端干旱.根据河南省冬小麦的生长特点将小麦生育期划分为生育前期、分蘖期和返青-抽穗-成熟期.采用Meteoinfo软件、Morlet小波分析方法、线性回归研究不同生育期干旱变化趋势、覆盖范围、发生频率、周期及空间分布,结果表明,冬小麦各个生育阶段均出现过不同程度的干旱,只是不同地区、不同年份发生的频率和强度不同,但各阶段均存在着轻度干旱发生的概率最大,而极端干旱发生的概率最小的特点.驻马店地区在各阶段发生干旱的概率都较大.对河南省冬小麦全生育期的SPEI分析表明,全生育期干旱出现概率的极值中心有显著的10 a左右的周期变化特征,近年来干旱指数呈逐渐增大的趋势.  相似文献   

12.
Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twentieth century simulations from eight AOGCMs that participated in the IPCC AR4. Comparison with observation forced land surface model estimates indicates that the models do reasonably well at replicating our best estimates of twentieth century, large scale drought occurrence, although the frequency of long-term (more than 12-month duration) droughts are over-estimated. Under the future projections, the models show decreases in soil moisture globally for all scenarios with a corresponding doubling of the spatial extent of severe soil moisture deficits and frequency of short-term (4–6-month duration) droughts from the mid-twentieth century to the end of the twenty-first. Long-term droughts become three times more common. Regionally, the Mediterranean, west African, central Asian and central American regions show large increases most notably for long-term frequencies as do mid-latitude North American regions but with larger variation between scenarios. In general, changes under the higher emission scenarios, A1B and A2 are the greatest, and despite following a reduced emissions pathway relative to the present day, the B1 scenario shows smaller but still substantial increases in drought, globally and for most regions. Increases in drought are driven primarily by reductions in precipitation with increased evaporation from higher temperatures modulating the changes. In some regions, increases in precipitation are offset by increased evaporation. Although the predicted future changes in drought occurrence are essentially monotonic increasing globally and in many regions, they are generally not statistically different from contemporary climate (as estimated from the 1961–1990 period of the 20C3M simulations) or natural variability (as estimated from the PICNTRL simulations) for multiple decades, in contrast to primary climate variables, such as global mean surface air temperature and precipitation. On the other hand, changes in annual and seasonal means of terrestrial hydrologic variables, such as evaporation and soil moisture, are essentially undetectable within the twenty-first century. Changes in the extremes of climate and their hydrological impacts may therefore be more detectable than changes in their means.  相似文献   

13.
内蒙古地区农业干旱检索查询及旱情实时监测系统   总被引:3,自引:1,他引:3  
针对内蒙古地区农业干旱的特点和旱灾发生频繁的现状,以及干旱对当地农业生产所造成的严重影响,利用地理信息系统(GIS)、Visual Basic和Access等技术方法,编制了内蒙古农业干旱检索查询及旱情实时监测系统。该系统建立了历史上农区干旱信息、农区干旱指标和作物生长季(4~9月)的基本气象资料、干旱实时监测信息等数据库,实现了历史上农区干旱信息(干旱出现年份、发生季节、出现强度、出现区域、受损情况等)的综合检索查询和实时气象资料的自动采集,具有监测信息的统计、检索、旱情分析评估等功能,能实时有效地监测干旱灾害的发生、发展,并提供逐月旱情评估、任意时段旱情分析和不同年份旱情的比较分析,可为相关部门抗旱决策提供可靠的数据资源。  相似文献   

14.
Climate impact analyses seldom examine temporal changes in the impacts and responses associated with climate anomalies. Newspaper reports, quantitative agricultural and water resource data and a survey of drought sensitive segments of society are used to compare the impacts and responses of a 1995 drought in the New York City metropolitan area to those experienced during five previous droughts. Impacts related to surface water supplies dominated each of the drought periods studied. Over time, however, changes in water consumption habits and available reservoir capacity lead to an increase in impact severity for similar meteorological conditions. To account for these non-climatic influences on water storage, a method to adjust for trends in available reservoir storage and water use is developed and implemented. Once adjusted, a fairly strong (R2 = 70.9%) exponential relationship exists between the minimum reservoir level and Palmer Drought Severity Index experienced during each drought period. Unadjusted levels exhibit a considerably weaker (R2 = 49.0%) relationship. Changes in water consumption and reservoir capacity also influenced the enactment of voluntary and ultimately mandatory water conservation measures. These restrictions were responsible for business and industrial impacts that varied through time as technology evolved and societal attitudes changed. Minor time-dependent changes were also evident in agricultural and wildfire impacts.  相似文献   

15.
This study addresses the dry spells observed in the La Plata Basin using daily data from 94 observation stations during sampling periods from 1900 to 2005. Dry days were defined as having less than 0.3?mm of accumulated precipitation. This definition allowed for the assessment of the dryness in the La Plata Basin and a comparison with other regions. The main purpose of this study was to analyse dry spells, especially extreme cases (meteorological droughts), and assess them on a daily basis. Trends and low frequency of droughts were analysed using a general framework to detect and compare properties of dry states based on daily and annual time scales. The trends were estimated using two different methods. Overall, the trends showed a decrease, especially in the eastern basin region during the period of 1972?C1996. The results showed sporadic decreases in dry events and events of extreme dryness (droughts). Spectral structure permits an inference of low-frequency maxima and confirmed an inter-annual 2- to 3-year period of variability in drought occurrence for most of the basin. Furthermore, probabilistic distribution functions of dry spells at basin stations were analysed to confirm that they followed a geometric?Cbinomial distribution. Additional tests were used to determine whether there was a second threshold, using the Weibull and gamma adjustment models. In order to study spatial homogeneity, the field of dry spell maxima in the basin was generated using a vector array based on the occurrence date and length of the maximum spell. Due to the dependence of spell length on the annual cycle, the longest spells were observed from April to the beginning of winter in the Argentine northwest region and in the northern and western regions of the basin. The intensity of droughts decreased in the Pampas and Mesopotamia regions. The drought of 1988 was considered to be the longest dry spell in the basin. The water deficits from this drought resulted in Argentinean economic losses of more than four billion US dollars during 1988.  相似文献   

16.
气象干旱指数是衡量农业干旱程度的指标之一。选取降水距平百分率PA、标准化降水指数SPI、标准化降水蒸散指数SPEI、通过SPI和SPEI构建的综合指数nSPEI(新的标准化降水蒸散指数)四种干旱指数,利用北疆绿洲农业区1961-2020年的气象数据,进行相关性、回归拟合、不同等级干旱频率分布等方面的对比,优选出对旱情描述更符合实际的干旱指数,并进而分析研究区的干旱变化特征。结果表明:(1)PA的干旱标准低估了干旱程度,SPI对温度上升引起的干旱加剧不敏感,SPEI计算蒸散发选用的Thornthwaite方法会高估温度对干旱的影响,nSPEI克服了SPI和SPEI的不足,对研究区的适用性最优。(2)近60年,研究区季尺度气象干旱随时间呈波动性变化特征,进入21世纪以来,春、夏季表现为湿-干变化,秋季表现为弱的干-湿变化,在干旱强度上,春、夏季由弱增强,秋季略减弱,在干旱范围上,以全局性干旱为主,春季局域性干旱增多,夏、秋季局域性干旱减少,在干旱频次上,春季特旱多,夏季重旱多,要注意相伴随的大风灾害和高温灾害,都会进一步加重农业旱情和灾情。  相似文献   

17.
水分盈亏指数及其在农业干旱监测中的应用   总被引:8,自引:2,他引:6  
苏永秀  李政  吕厚荃 《气象科技》2008,36(5):592-595
从广西农业生产特点和农业干旱监测业务实际需要出发,建立了综合考虑降雨量和同期作物需水量的基于作物水分盈亏原理的农业干旱监测模型,农业干旱监测等级指标,并用该指标分析了1961~2004年广西双季稻、甘蔗生育期间农业干旱的时空分布特征,用自治区农业厅同期旱情资料对2004年广西春旱发生情况进行监测验证.结果表明:水分盈亏指数模型能很好地反映旱情,是一种实时的干旱监测方法,能运用于广西农业干旱监测业务,在每季干旱发生频率的时空分布特征分析上得到的结果也与实际情况相符合.  相似文献   

18.
陕西关中及周边地区近500a来初夏旱涝事件初步分析   总被引:4,自引:0,他引:4  
基于华山树轮宽度差值年表重建的陕西关中及周边地区近500a来的初夏干燥指数序列,对该地区初夏极端旱涝事件及其连续旱涝变化特征进行了初步分析.区域干燥指数与Palmer指数在变化上极为相似,可用于反映该地区的旱涝变化.结果表明:该地区近500a来初夏共发生18次极端干旱事件和11次极端洪涝事件,除公元1521年与历史文献记录的旱涝事件相反,公元1513年、1574年、1675年和1945年未发现历史记录外,其余年份均能找到相应记录;近500a来初夏存在9个显著的连续偏旱期和10个显著的连续偏涝期,并以16和19世纪发生的连续旱涝事件最为频繁,而17和18世纪发生的旱涝事件相对较少,20世纪发生的干旱事件明显多于洪涝事件.  相似文献   

19.
Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901–1930, 1931–1960, 1961–1990 to 2001–2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991–2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981–1990, 1991–2000, and 2001–2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong spatiotemporal fluctuations in explanatory power of the different indices over all German counties and the three time periods. Over the 30 years, yield deviations were increasingly well correlated with heat and drought-related indices, with the number of days with maximum temperature above 25 °C during anthesis showing a sharp increase in explanatory power over entire Germany in the final 2001–2010 period.  相似文献   

20.
区域动态气象干旱强度指数及其应用   总被引:1,自引:0,他引:1  
王学锋 《气象科技》2012,40(4):601-605
基于综合气象干旱指数的基本原理,以气象干旱等级为基础构建区域动态气象干旱强度指数,并就其在监测评估业务上的应用进行分析研究。结果表明:区域动态气象干旱强度指数实现了对干旱强度的实时动态监测和评价,充分考虑了干旱的累积效应,不以人为划定时段来评价干旱强度,具有动态性、连续性和客观性的特点,可广泛应用于区域干旱的实时监测、灾害预警、过程评价、历史排位判断、重现期分析等业务。通过对2009/2010年云南秋冬春特大干旱中的应用检验,效果优于气象干旱指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号