首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
The interpretations of trend behaviour for dry and wet events are analysed in order to verify the dryness and wetness episodes. The fitting distribution of rainfall is computed to classify the dry and wet events by applying the standardised precipitation index (SPI). The rainfall amount for each station is categorised into seven categories, namely extremely wet, severely wet, moderately wet, near normal, moderately dry, severely dry and extremely dry. The computation of the SPI is based on the monsoon periods, which include the northeast monsoon, southwest monsoon and inter-monsoon. The trends of the dry and wet periods were then detected using the Mann–Kendall trend test and the results indicate that the major parts of Peninsular Malaysia are characterised by increasing droughts rather than wet events. The annual trends of drought and wet events of the randomly selected stations from each region also yield similar results. Hence, the northwest and southwest regions are predicted to have a higher probability of drought occurrence during a dry event and not much rain during the wet event. The east and west regions, on the other hand, are going through a significant upward trend that implies lower rainfall during the drought episodes and heavy rainfall during the wet events.  相似文献   

3.
The analysis of the daily rainfall occurrence behavior is becoming more important, particularly in water-related sectors. Many studies have identified a more comprehensive pattern of the daily rainfall behavior based on the Markov chain models. One of the aims in fitting the Markov chain models of various orders to the daily rainfall occurrence is to determine the optimum order. In this study, the optimum order of the Markov chain models for a 5-day sequence will be examined in each of the 18 rainfall stations in Peninsular Malaysia, which have been selected based on the availability of the data, using the Akaike’s (AIC) and Bayesian information criteria (BIC). The identification of the most appropriate order in describing the distribution of the wet (dry) spells for each of the rainfall stations is obtained using the Kolmogorov-Smirnov goodness-of-fit test. It is found that the optimum order varies according to the levels of threshold used (e.g., either 0.1 or 10.0 mm), the locations of the region and the types of monsoon seasons. At most stations, the Markov chain models of a higher order are found to be optimum for rainfall occurrence during the northeast monsoon season for both levels of threshold. However, it is generally found that regardless of the monsoon seasons, the first-order model is optimum for the northwestern and eastern regions of the peninsula when the level of thresholds of 10.0 mm is considered. The analysis indicates that the first order of the Markov chain model is found to be most appropriate for describing the distribution of wet spells, whereas the higher-order models are found to be adequate for the dry spells in most of the rainfall stations for both threshold levels and monsoon seasons.  相似文献   

4.
This study presents the spatial analysis of daily rainfall intensity and concentration index over Peninsular Malaysia. Daily rainfall data from 50 rainfall stations are used in this study. Due to the limited number of stations, the geostatistical method of ordinary kriging is used to compute the values of daily rainfall concentration and intensity and to map their spatial distribution. The resultant analysis of rainfall concentration indicated that the distribution of daily rainfall is more regular over the west, northwest and southwest regions compared to the east. Large areas of the eastern Peninsula display an irregularity in distribution of daily rainfall. In terms of number of rainy days, analysis of daily rainfall confirms that a large number of rainy days across the Peninsula arise from low-intensity events but only contribute a small percentage of total rain. On the other hand, a low frequency of rainy days with high-intensity events contributes the largest percentage of total rain. The results indicated that the total rain in eastern areas is mainly contributed by the high-intensity events. This finding explains the occurrence of a large number of floods and soil erosions in these areas. Therefore, precautionary measures should be taken earlier to prevent any massive destruction of property and loss of life due to the hazards. These research findings are of considerable importance in providing enough information to water resource management, climatologists and agriculturists as well as hydrologists for planning their activities and modelling processes.  相似文献   

5.

This study involves the modelling of a homogeneous hidden Markov model (HMM) on the northeast rainfall monsoon using 40 rainfall stations in Peninsular Malaysia for the period of 1975 to 2008. A six hidden states HMM was selected based on Bayesian information criterion (BIC), and every hidden state has distinct rainfall characteristics. Three of the states were found to correspond by wet conditions; while the remaining three states were found to correspond to dry conditions. The six hidden states were found to correspond with the associated atmospheric composites. The relationships between El Niño–Southern Oscillation (ENSO) and the sea surface temperatures (SST) in the Pacific Ocean are found regarding interannual variability. The wet (dry) states were found to be well correlated with a Niño 3.4 index which was used to characterize the intensity of an ENSO event. This model is able to assess the behaviour of the rainfall characteristics with the large scale atmospheric circulation; the monsoon rainfall is well correlated with the El Niño–Southern Oscillation in Peninsular Malaysia.

  相似文献   

6.
Statistical distributions of extreme dry spell in Peninsular Malaysia   总被引:1,自引:1,他引:0  
Statistical distributions of annual extreme (AE) series and partial duration (PD) series for dry-spell event are analyzed for a database of daily rainfall records of 50 rain-gauge stations in Peninsular Malaysia, with recording period extending from 1975 to 2004. The three-parameter generalized extreme value (GEV) and generalized Pareto (GP) distributions are considered to model both series. In both cases, the parameters of these two distributions are fitted by means of the L-moments method, which provides a robust estimation of them. The goodness-of-fit (GOF) between empirical data and theoretical distributions are then evaluated by means of the L-moment ratio diagram and several goodness-of-fit tests for each of the 50 stations. It is found that for the majority of stations, the AE and PD series are well fitted by the GEV and GP models, respectively. Based on the models that have been identified, we can reasonably predict the risks associated with extreme dry spells for various return periods.  相似文献   

7.
Urbanisation has burdened cities with many problems associated with growth and the physical environment. Some of the urban locations in India are becoming increasingly vulnerable to natural hazards related to precipitation and flooding. Thus it becomes increasingly important to study the characteristics of these events and their physical explanation. This work studies rainfall trends in Delhi and Mumbai, the two biggest Metropolitan cities of Republic of India, during the period from 1951 to 2004. Precipitation data was studied on basis of months, seasons and years, and the total period divided in the two different time periods of 1951–1980 and 1981–2004 for detailed analysis. Long-term trends in rainfall were determined by Man-Kendall rank statistics and linear regression. Further this study seeks for an explanation for precipitation trends during monsoon period by different global climate phenomena. Principal component analysis and Singular value decomposition were used to find relation between southwest monsoon precipitation and global climatic phenomena using climatic indices. Most of the rainfall at both the stations was found out to be taking place in Southwest monsoon season. The analysis revealed great degree of variability in precipitation at both stations. There is insignificant decrease in long term southwest monsoon rainfall over Delhi and slight significant decreasing trends for long term southwest monsoon rainfall in Mumbai. Decrease in average maximum rainfall in a day was also indicated by statistical analysis for both stations. Southwest monsoon precipitation in Delhi was found directly related to Scandinavian Pattern and East Atlantic/West Russia and inversely related to Pacific Decadal Oscillation, whereas precipitation in Mumbai was found inversely related to Indian ocean dipole, El Ni?o- Southern Oscillation and East Atlantic Pattern.  相似文献   

8.
The development of the rainfall occurrence model is greatly important not only for data-generation purposes, but also in providing informative resources for future advancements in water-related sectors, such as water resource management and the hydrological and agricultural sectors. Various kinds of probability models had been introduced to a sequence of dry (wet) days by previous researchers in the field. Based on the probability models developed previously, the present study is aimed to propose three types of mixture distributions, namely, the mixture of two log series distributions (LSD), the mixture of the log series Poisson distribution (MLPD), and the mixture of the log series and geometric distributions (MLGD), as the alternative probability models to describe the distribution of dry (wet) spells in daily rainfall events. In order to test the performance of the proposed new models with the other nine existing probability models, 54 data sets which had been published by several authors were reanalyzed in this study. Also, the new data sets of daily observations from the six selected rainfall stations in Peninsular Malaysia for the period 1975–2004 were used. In determining the best fitting distribution to describe the observed distribution of dry (wet) spells, a Chi-square goodness-of-fit test was considered. The results revealed that the new method proposed that MLGD and MLPD showed a better fit as more than half of the data sets successfully fitted the distribution of dry and wet spells. However, the existing models, such as the truncated negative binomial and the modified LSD, were also among the successful probability models to represent the sequence of dry (wet) days in daily rainfall occurrence.  相似文献   

9.
Changes in rainfall extremes pose a serious and additional threat to water resources planning and management, natural and artificial oasis stability, and sustainable development in the fragile ecosystems of arid inland river basins. In this study, the trend and temporal variation of extreme precipitation are analyzed using daily precipitation datasets at 11 stations over the arid inland Heihe River basin in Northwest China from 1960 to 2011. Eight indices of extreme precipitation are studied. The results show statistically significant and large-magnitude increasing and decreasing trends for most indices, primarily in the Qilian Mountains and eastern Hexi Corridor. More frequent and intense rainfall extremes have occurred in the southern part of the desert area than in the northern portion. In general, the temporal variation in precipitation extremes has changed throughout the basin. Wet day precipitation and heavy precipitation days show statistically significant linear increasing trends and step changes in the Qilian Mountains and Hexi Corridor. Consecutive dry days have decreased obviously in the region in most years after approximately the late 1980s, but meanwhile very long dry spells have increased, especially in the Hexi Corridor. The probability density function indicates that very long wet spells have increased in the Qilian Mountains. The East Asian summer monsoon index and western Pacific subtropical high intensity index possess strong and significant negative and positive correlations with rainfall extremes, respectively. Changes in land surface characteristics and the increase in water vapor in the wet season have also contributed to the changes in precipitation extremes over the river basin.  相似文献   

10.
Summary The interannual and decadal scale variability in the North Atlantic Oscillation (NAO) and its relationship with Indian Summer monsoon rainfall has been investigated using 108 years (1881–1988) of data. The analysis is carried out for two homogeneous regions in India, (Peninsular India and Northwest India) and the whole of India. The analysis reveals that the NAO of the preceding year in January has a statistically significant inverse relationship with the summer monsoon rainfall for the whole of India and Peninsular India, but not with the rainfall of Northwest India. The decadal scale analysis reveals that the NAO during winter (December–January–February) and spring (March–April–May) has a statistically significant inverse relationship with the summer monsoon rainfall of Northwest India, Peninsular India and the whole of India. The highest correlation is observed with the winter NAO. The NAO and Northwest India rainfall relationship is stronger than that for the Peninsular and whole of India rainfall on climatological and sub-climatological scales.Trend analysis of summer monsoon rainfall over the three regions has also been carried out. From the early 1930s the Peninsular India and whole of India rainfall show a significant decreasing trend (1% level) whereas the Northwest India rainfall shows an increasing trend from 1896 onwards.Interestingly, the NAO on both climatological and subclimatological scales during winter, reveals periods of trends very similar to that of Northwest Indian summer monsoon rainfall but with opposite phases.The decadal scale variability in ridge position at 500 hPa over India in April at 75° E (an important parameter used for the long-range forecast of monsoon) and NAO is also investigated.With 4 Figures  相似文献   

11.
Intra-seasonal drought episodes (extreme dry spells) are strongly linked to crop yield loss in the West African Sahel, especially when they occur at crop critical stages such as juvenile or flowering stage. This paper seeks to expose potentially predictable features in the sub-seasonal to inter-annual occurrence of “extreme dry spells” (extDS) through their links to sea surface temperature anomalies (SSTAs). We consider two kinds of extreme dry spells: more than 2 weeks of consecutive dry days following a rain event (often found at the beginning of the rainy season, after the first rain events) and more than a week (observed towards the end of the rainy season, before the last rain events). We extract dry spells from daily rainfall data at 43 stations (31 stations in Senegal over 1950–2010 and 12 stations in Niger over 1960–2000) to identify the intra-seasonal distribution of extDS and their significant correlation with local rainfall deficits. Seasonality of distribution and high spatial coherence are found in the timing and the frequency of occurrence of extDS in different rainfall regions over Niger and Senegal. The correlation between the regional occurrence index (ROI), necessary to capture the spatial extent of extDS, and observed global sea surface temperature anomalies (SSTAs) sheds light on the influence of the external factors on the decadal, interannual and sub-seasonal variability of extDS over the West African Sahel. When the global tropics and the Atlantic are warmer than normal, more coherent and delayed June–July extDS are observed after onset of rainy season, as well as early cessation type in August–September. When the Indo-Pacific is cooler and the equatorial south Atlantic is warmer than normal little to no extDS are found in the onset sub-period of the monsoon season. Mostly late types of extDS occur in October as a result of late cessation. These results show potential predictability of extreme dry spells after onset and before cessation of monsoonal rain based on global patterns of sea surface temperature anomalies.  相似文献   

12.
Summary The summer monsoon rainfall over Orissa, a state of eastern India, shows characteristic intraseasonal and interannual variability, due to interaction of basic westerly flow with orography and the synoptic scale monsoon disturbances including low-pressure systems and cyclonic circulations extending upto mid-tropospheric level (LPSC). These systems normally develop over the north Bay of Bengal and move west-northwestwards along the monsoon trough. The essence of this study is to find out the main features of the intraseasonal variability of daily monsoon rainfall over Orissa in relation to synoptic systems like LPSC and its implication on the interannual variation of rainfall. For this purpose, the actual and mean daily rainfall data of 31 uniformly distributed stations, six homogeneous regions and Orissa as a whole during monsoon season (June–September) over a period of 20 years (1980–1999) are subjected to auto-correlation and power spectrum analyses. The actual and average daily scores of significant EOFs and actual daily occurrence along with daily probability of occurrence of the LPSC influencing rainfall over Orissa during the same period are also subjected to auto-correlation and power spectrum analyses. The intraseasonal variation of monsoon rainfall over Orissa and different homogeneous regions is dominated by the synoptic mode (3–9 days) of variation due to the similar mode of variation in the occurrence of LPSC influencing the rainfall. The seasonal rainfall and hence the interannual variation depends on the intraseasonal variation of rainfall modulated with the synoptic mode of variation in the occurrence of the LPSC. The occurrence of LPSC over the northwest (NW) Bay/NW and adjoining northeast (NE) Bay and its subsequent movement and persistence over Orissa and east Madhya Pradesh & Chhattisgarh in synoptic mode (3–6 days) alongwith absence of similar mode in the occurrence of the LPSC over NE Bay, Gangetic West Bengal (GWB) in the north and west central (WC) Bay to the south leads to excess rainfall over different homogeneous regions and Orissa as a whole. The reverse is the case in deficient years over Orissa and all homogeneous regions except southwest Orissa. The occurrence of the LPSC over GWB in synoptic mode (about 5 days) alongwith absence of synoptic mode in the occurrence of the LPSC over NW Bay leads to deficient rainfall year over southwest Orissa. Correspondence: U. C. Mohanty, Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016, India  相似文献   

13.
利用1961~2017年我国东北地区96个站点逐日降水、相对湿度和气温等资料,运用趋势分析、Mann-Kendall突变检验等方法,分析了东北地区夏季小雨、中雨、大雨、暴雨的气候变化特征,并对东北地区小雨量减少进行了成因分析,得出主要结论如下:东北地区夏季总降水量与各量级降水频率和贡献率均呈显著的正相关,总降水量的多寡受大雨频率及贡献率的影响最为显著。小雨量和中雨量的减少是导致东北地区夏季总降水量减少的主要原因,暴雨量受暴雨贡献率增加影响呈增加趋势。小雨量和小雨贡献率在1993年前后出现了年代际突变,小雨贡献率的突变是造成小雨量年代际突变的内在因素。东北地区总降水量呈减少趋势的站点有72个;小雨量呈减少趋势的站点有85个,显著减少的站点数达到25个;中雨量呈减少趋势的站点有70个,显著减少的站点只有9个;大雨量呈增加与减少趋势的站点数相当;而暴雨量呈增加趋势的站点数大于减少的站点数。从云形成机制角度出发,分别讨论大气水汽、温度、气溶胶浓度变化对东北地区小雨量减少的影响。结果表明,在全球变暖背景下东北地区气温增加和气溶胶浓度增加是导致该地区小雨量减少的主要原因。  相似文献   

14.
Spatial and temporal analysis of dry spells in Croatia   总被引:3,自引:1,他引:2  
Systematic statistical analysis of dry day sequences, which are defined according to 0.1, 1, 5 and 10 mm of precipitation-per-day thresholds, is performed on seasonal and yearly basis. The data analysed come from 25 Croatian meteorological stations and cover the period 1961–2000. Climatological features of the mean and maximum dry spell durations, as well as the frequency of long dry spells (>20 days) are discussed. The results affirm the three main climatological regions in Croatia, with the highlands exhibiting shorter dry spells than the mainland, and the coastal region exhibiting longer dry spells. The prevailing positive trend of both mean and maximal durations is detected during winter and spring seasons, while negative trend dominate in autumn for all thresholds. Positive field significant trends of mean dry spell duration with 5 and 10 mm thresholds are found during spring and the same is valid for annual maximum dry spell duration with a 10 mm threshold. It is found that the Discrete Autoregressive Moving Average (DARMA(1,1)) model can be used to estimate the probabilities of dry spells in Croatia that are up to 20–30 days long.  相似文献   

15.
The Chao Phraya basin, Thailand, is frequently inundated by flooding during the southwest monsoon period. Most floods coincide with consecutive rainfall days. This study investigated consecutive rainfall days during the southwest monsoon period at 11 stations over northern Thailand, the upstream area of this basin. The Markov chain probability model was used to study the consecutiveness of days with at least 0.1, 10.1, and 35.1 mm of rainfall. The consecutive length of rainfall days from the model showed good agreement with the observed value. A chi-square test of independence was applied to assess the significance of the consecutiveness, and it was found that days with at least 10.1 mm of rainfall tend to be consecutive over the entire area. Moreover, days with at least 35.1 mm of rainfall were found to be consecutive over the joint area where the mountainous region meets the plain area. However, the consecutiveness of days with less than 10.1 mm of rainfall was not obvious. The rainfall amount on days with at least 10.1 mm of rainfall was also calculated and it showed lower values over the mountainous region than over the plain. Hence, this study established the characteristics of consecutive rainfall days over the plain, mountainous region, and joint area.  相似文献   

16.
The day-to-day behavior of Indian summer monsoon rainfall (IMR) is associated with a hierarchy of quasi-periods, namely 3?C7, 10?C20 and the 30?C60?days. These two periods, the 10?C20?days and the 30?C60?days have been related with the active and break cycles of the monsoon rainfall over the Indian sub-continent. The seasonal strength of Indian summer monsoon rainfall may depend on the frequency and duration of spells of break and active periods associated with the fluctuations of the above intra-seasonal oscillations (ISOs). Thus the predictability of the seasonal (June through September) mean Indian monsoon depends on the extent to which the intra-seasonal oscillations could be predicted. The primary objective of this study is to bring out the dynamic circulation features during the pre-monsoon/monsoon season associated with the extreme phases of these oscillations The intense (weak) phase of the 10?C20 (30?C60) days oscillation is associated with anti-cyclonic circulation over the Indian Ocean, easterly flow over the equatorial Pacific Ocean resembling the normal or cold phase (La Nina) of El Nino Southern Oscillation (ENSO) phenomenon, and weakening of the north Pacific Sub-tropical High. On the other hand the weak phase of 10?C20?days mode and the intense phase of 30?C60?days mode shows remarkable opposite flow patterns. The circulation features during pre-monsoon months show that there is a tendency for the flow patterns observed in pre-monsoon months to persist during the monsoon months. Hence some indications of the behavior of these modes during the monsoon season could be foreshadowed from the spring season patterns. The relationship between the intensity of these modes and some of the long-range forecasting parameters used operationally by the India Meteorological Department has also been examined.  相似文献   

17.
Spatial and temporal changes in daily temperature and rainfall indices are analyzed for the source region of Yellow River. Three periods are examined: 1960–1990, 1960–2000 and 1960–2006. Significant warming trends have been observed for the whole study region over all the three periods, particularly over the period 1960–2006. This warming is mainly attributed to a significant increase in the minimum temperature, and characterized by pronounced changes in the low temperature events composing a significant increase in the magnitude and a significant decrease in the frequency. In contrast to the temperature indices, no significant changes have been observed in the rainfall indices at the majority of stations. However, the rainfall shows noticeable increasing trends during winter and spring from a basin-wide point of view. Conversely, the frequency and contribution of moderately heavy rainfall events to total rainfall show a significant decreasing trend in summer. To conclude, this study shows that over the past 40–45 years the source region of the Yellow River has become warmer and experienced some seasonally varying changes in rainfall, which also supports an emerging global picture of warming and the prevailing positive trends in winter rainfall extremes over the mid-latitudinal land areas of the Northern Hemisphere.  相似文献   

18.
Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901–1930, 1931–1960, 1961–1990 to 2001–2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991–2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981–1990, 1991–2000, and 2001–2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong spatiotemporal fluctuations in explanatory power of the different indices over all German counties and the three time periods. Over the 30 years, yield deviations were increasingly well correlated with heat and drought-related indices, with the number of days with maximum temperature above 25 °C during anthesis showing a sharp increase in explanatory power over entire Germany in the final 2001–2010 period.  相似文献   

19.
Summary The object of this study is the determination of the number of rainy days in the area of the Aegean sea, based on data obtained from 14 observation stations during the period 1950–1975.The results showed considerable differences from North to South. The seasonal number of rainy days as well as that of rainy spells were examined for the period 1950–1975. The spells of rainy days play an important role in the agricultural activities, especially over the southern part of the Aegean sea basin, where the annual amounts of rainfall are insufficient.From the data was concluded that during the summer, more than four consecutive rainy days were recorded at the northern most stations only and these of infrequent occurrence; whereas during the winter, it was possible to encounter up to 15 consecutive rainy days.Finally, we give a theoretical distribution for the rainy spells for each station and for each season and year, using Polya's method. We found that this distribution fitted well the 95% of the confidence level in the majority of the cases.With 2 Figures  相似文献   

20.
Frequency, intensity, areal extent (AE) and duration of rain spells during summer monsoon exhibit large intra-seasonal and inter-annual variations. Important features of the monsoon period large-scale wet spells over India have been documented. A main monsoon wet spell (MMWS) occurs over the country from 18 June to 16 September, during which, 26.5 % of the area receives rainfall 26.3 mm/day. Detailed characteristics of the MMWS period large-scale extreme rain events (EREs) and spatio-temporal EREs (ST-EREs), each concerning rainfall intensity (RI), AE and rainwater (RW), for 1 to 25 days have been studied using 1° gridded daily rainfall (1951–2007). In EREs, ‘same area’ (grids) is continuously wet, whereas in ST-EREs, ‘any area’ on the mean under wet condition for specified durations is considered. For the different extremes, second-degree polynomial gave excellent fit to increase in values from distribution of annual maximum RI and RW series with increase in duration. Fluctuations of RI, AE, RW and date of occurrence (or start) of the EREs and the ST-EREs did not show any significant trend. However, fluctuations of 1° latitude–longitude grid annual and spatial maximum rainfall showed highly significant increasing trend for 1 to 5 days, and unprecedented rains on 26–27 July 2005 over Mumbai could be a realization of this trend. The Asia–India monsoon intensity significantly influences the MMWS RW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号