首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Asymmetrical monsoons during the recent past have resulted into spatially variable and devastating floods in South Asia. Analysis of historic precipitation extremes record may help in formulating mitigation strategies at local level. Eleven indices of precipitation extremes were evaluated using RClimDex and daily time series data for analysis period of 1981–2010 from five representative cities across Punjab province of Pakistan. The indices include consecutive dry days, consecutive wet days, number of days above daily average precipitation, number of days with precipitation ≥10 mm, number of days with precipitation ≥20 mm, very wet days, extremely wet days, simple daily intensity index, maximum 1-day precipitation quantity, maximum 5 consecutive day precipitation quantity, and annual total wet-day precipitation. Mann-Kendall test and Sen’s slope extremes were used to detect trends in indices. Droughts and excessive precipitation were dictated by elevation from mean sea level with prolonged dry spells in southern Punjab and vice versa confirming spatial trends for precipitation extremes. However, no temporal trend was observed for any of the indices. Summer in the region is the wettest season depicting contribution of monsoons during June through August toward devastating floods in the region.  相似文献   

2.
Based on daily precipitation records at 75 meteorological stations in Hunan Province, central south China, the spatial and temporal variability of precipitation indices is analyzed during 1961–2010. For precipitation extremes, most of precipitation indices suggest that both the amount and the intensity of extreme precipitation are increasing, especially the mean precipitation amount on a wet day, showing a significant positive trend. Meanwhile, both of the monthly rainfall heterogeneity and the contribution of the days with the greatest rainfall show an upward trend. When it comes to rainfall erosivity, most of this province is characterized by high values of annual rainfall erosivity. Although the directions of trends in annual rainfall erosivity at most stations are upward, only 6 of the 75 stations have significant trends. Furthermore, the spatial and temporal variation of dryness/wetness has been assessed by the standardized precipitation index (SPI). The principal component analysis (PCA) was applied to the SPI series computed on 24-month time scales. The results demonstrated a noticeable spatial variability with three subregions characterized by different trends: a remarkable wet tendency prevails in the central and southern areas, while the northern areas are dominated by a remarkable dry tendency.  相似文献   

3.
甘肃省河西内陆河流量长期变化特征   总被引:11,自引:2,他引:9  
利用甘肃省河西地区3条主要内陆河石羊河、黑河、疏勒河40余年的流量资料以及河西走廊地区和祁连山区气象资料对河西地区内陆河流量的长期变化特征进行了分析,并对所获结果进行了讨论,得到一些有意义的结论.  相似文献   

4.
Changes in precipitation exert an enormous impact on human life, and it is of vital importance to study regular patterns of meteorological and hydrological events. In order to explore the changing spatial and temporal patterns of precipitation amounts, precipitation extremes and precipitation concentration in Jiangxi province in southeast China between 1960 and 2008, several precipitation indices series were analysed using the Mann–Kendall test in this study. Our results indicate remarkable differences among the stations with negative and positive precipitation trends at the annual, seasonal and monthly scales, significant increasing trends are mainly found during January, August, winter and summer, while significant decreasing trends mostly are observed during October and autumn. For precipitation extremes, most precipitation indices suggest that both the intensity and the days of extreme precipitation are increasing; the mean precipitation amount, especially, on a wet day shows a significant positive trend. When it comes to precipitation concentration, the monthly rainfall heterogeneity shows an insignificant downward trend, while the contribution of the days with greatest rainfall displays an insignificant upward trend. Furthermore, the long-range persistence is detected for changing process of precipitation amount, extreme precipitation and precipitation concentration using the Rescaled Range Analysis.  相似文献   

5.
A method of moving precipitation totals is described and applied for the analysis of precipitation extremes in Estonia. Numbers of extremely wet and extremely dry days and other indices of precipitation extremes were calculated using the daily precipitation data measured at 51 stations over Estonia during 1957–2009. Mean regularities of spatial and seasonal distribution were determined. Long-term changes were detected using Sen's method and Mann–Kendall test. The highest risk of heavy precipitation is in the regions of higher mean precipitation on the uplands and on the belt of higher precipitation in the western part of continental Estonia. Wet spells have their sharp maxima in July and August. The highest risk of droughts is observed in the coastal regions of West Estonia. In the coastal area, droughts appear mostly in the first half of summer, while in the eastern Estonia, they are usually observed during the second half of summer. Extreme precipitation events have become more frequent and intense. Statistically significant increasing trends were, first of all, found in the time series of winter extreme precipitation indices. In summer and autumn, trends existed in some indices, but in spring, there were no trends at all. There were no trends in time series of dryness indices in Estonia in 1957–2009.  相似文献   

6.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

7.
Understanding variations in precipitation from a variety of aspects is important for the utilization of water resources. Based on daily precipitation records at 98 meteorological stations in Sichuan province, southwestern China, the spatial and temporal changes in wet/dry spells were investigated by using 14 precipitation indices. The Mann–Kendall trend test is used to detect trends in the index series. Results suggest that the decrease of precipitation in central and eastern Sichuan was significant in terms of decreasing tendencies of wet spell indices. However, the decreasing trend of dry spell indices suggested an increase in precipitation in western Sichuan province. A higher risk of droughts can be expected in autumn and wet spell indices in winter and spring are increasing, implying obvious seasonality and seasonal shifts of change in precipitation within this province. Wet/dry spells with short duration were accounted for a large proportion of spells in Sichuan. The occurrence and fractional contribution of short-duration wet spells were increasing. The same trend was found in dry spells with short and moderate duration in Sichuan  相似文献   

8.
近50 a来中国不同流域降水的变化趋势分析   总被引:4,自引:3,他引:1  
利用我国612个气象站1961—2010年逐日降水量资料,借助地理信息系统Arc GIS,分析了我国十大流域的年、季节降水量的时空变化趋势特征。结果表明,我国降水主要集中在珠江、东南诸河和长江流域,西北诸河流域降水最少;四季降水量与年降水量的空间分布特征高度相似;降水量均为夏季最多,冬季最少。就年降水量而言,西北诸河流域有变湿趋势,海河流域和黄河流域有变干趋势。就降水季节而言,西南诸河、松花江、西北诸河流域春季有变湿趋势;东南诸河流域和长江流域夏季有变湿趋势,海河流域和西南诸河流域夏季有变干趋势;西北诸河流域秋季有变湿趋势,长江流域、黄河流域和淮河流域秋季有变干趋势;松花江流域、西北诸河流域和长江流域冬季有变湿趋势。  相似文献   

9.
Summary Wet and dry spell properties of monthly rainfall series at five meteorology stations in Turkey are examined by plotting successive wet and dry month duration versus their number of occurrences on the double-logarithmic paper. Straight line relationships on such graphs show that power-laws govern the pattern of successive persistent wet and dry monthly spells. Functional power law relationships between the number of dry and wet spells for a given monthly period are derived from the available monthly precipitation data. The probability statements for wet and dry period spells are obtained from the power law expressions. Comparison of power-law behaviours at five distinct sites in Turkey provides useful interpretation about the temporal and spatial rainfall pattern. As in temperate areas such as Turkey the rainfall amounts change mostly due to one-month-long dry or wet spells. Received August 29, 1995 Revised November 9, 1995  相似文献   

10.
We analyze historical simulations of variability in temperature and rainfall extremes in the twentieth century, as derived from various global models run informing the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4). On the basis of three indices of climate extremes, we compare observed and modeled trends in time and space, including the direction and significance of the changes at the scale of South America south of 10° S. The climate extremes described warm nights, heavy rainfall amounts and dry spells. The reliability of the GCM simulations is suggested by similarity between observations and simulations in the case of warm nights and extreme rainfall in some regions. For any specific extreme temperature index, minor differences appear in the spatial distribution of the changes across models in some regions, while substantial differences appear in regions in the interior of tropical and subtropical South America. The differences are in the relative magnitude of the trends. Consensus and significance are less strong when regional patterns are considered, with the exception of the La Plata Basin, where observed and simulated trends in warm nights and extreme rainfall are evident.  相似文献   

11.
In this study, satellite-based daily precipitation estimation data from precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN)-climate data record (CDR) are being evaluated in Iran. This dataset (0.25°, daily), which covers over three decades of continuous observation beginning in 1983, is evaluated using rain-gauge data for the period of 1998–2007. In addition to categorical statistics and mean annual amount and number of rainy days, ten standard extreme indices were calculated to observe the behavior of daily extremes. The results show that PERSIANN-CDR exhibits reasonable performance associated with the probability of detection and false-alarm ratio, but it overestimates precipitation in the area. Although PERSIANN-CDR mostly underestimates extreme indices, it shows relatively high correlations (between 0.6316–0.7797) for intensity indices. PERSIANN-CDR data are also used to calculate the trend in annual amounts of precipitation, the number of rainy days, and precipitation extremes over Iran covering the period of 1983–2012. Our analysis shows that, although annual precipitation decreased in the western and eastern regions of Iran, the annual number of rainy days increased in the northern and northwestern areas. Statistically significant negative trends are identified in the 90th percentile daily precipitation, as well as the mean daily precipitation from wet days in the northern part of the study area. The positive trends of the maximum annual number of consecutive dry days in the eastern regions indicate that the dry periods became longer in these arid areas.  相似文献   

12.
The high variability of the Mediterranean climate from year to year and within each year makes it difficult to assess changes that could be associated with a climate change. In this paper some indices, such as changes in the precipitation concentration during the year, maximum 1-day and 5-day precipitation, number of wet days (total and those with precipitation higher than the 75th and 95th percentile), magnitude and frequency of extreme events (considered as the rainfall higher than that corresponding to the 99th percentile), fraction of annual total precipitation due to events exceeding the 95th and 99th percentile, strength of the events, and length and frequency of dry period (days between consecutive rains) are evaluated for the Penedès-Anoia region (NE Spain). A 80-year daily dataset (1923–2002) and two 40-year series were used to assess possible trends. The indices indicate an increase in precipitation in winter and summer and a positive trend of concentration in autumn, with a higher number of extreme events separated by longer dry periods. The total number of wet days per year increased, although it was irregularly distributed over the year, with an increase in the extremes and in the fraction of total rainfall that these events represent in autumn and winter, and with an increase of the strength of the events in autumn. These changes in rainfall distribution have negative effects on water availability for crops and contribute to accelerate erosion processes in the area.  相似文献   

13.
14.
Assessment of climate extremes in the Eastern Mediterranean   总被引:4,自引:0,他引:4  
Summary Several seasonal and annual climate extreme indices have been calculated and their trends (over 1958 to 2000) analysed to identify possible changes in temperature- and precipitation-related climate extremes over the eastern Mediterranean region. The most significant temperature trends were revealed for summer, where both minimum and maximum temperature extremes show statistically significant warming trends. Increasing trends were also identified for an index of heatwave duration. Negative trends were found for the frequency of cold nights in winter and especially in summer. Precipitation indices highlighted more regional contrasts. The western part of the study region, which comprises the central Mediterranean and is represented by Italian stations, shows significant positive trends towards intense rainfall events and greater amounts of precipitation. In contrast, the eastern half showed negative trends in all precipitation indices indicating drier conditions in recent times. Significant positive trends were revealed for the index of maximum number of consecutive dry days, especially for stations in southern regions, particularly on the islands.Current affiliation: National Observatory of Athens, Athens, Greece.  相似文献   

15.
Summary For assessing risk of highly unusual events extreme value statistics needs to be applied, which plays an important role in engineering practices for water resources design and management. In hydrology, the typical application of extreme value theory concerns floods in river basins or landslides. The present paper is, instead, focused on the analysis of extreme wet and dry periods in a sample area (Sicily). First, we have studied monthly precipitation extremes both using the annual maximum and partial duration methods, and return times have been estimated by standard statistical techniques. Next, we studied the extremes of the Standardized Precipitation Index (SPI), which has been proposed as an indicator for monitoring wet and dry conditions. We found considerable differences both in the return periods and in the time location of the extremes. From our study it appears that the SPI better describes wet and dry periods than the precipitation does. Maps of return times for extreme conditions in Sicily are also presented, which cluster the territory into areas of different extreme return periods. Finally, the occurrence of extremes in Sicily has been related to large-scale atmospheric circulation.  相似文献   

16.
近60年来中国主要流域极端降水演变特征   总被引:1,自引:0,他引:1       下载免费PDF全文
江洁  周天军  张文霞 《大气科学》2022,46(3):707-724
在全球增暖背景下,中国极端降水事件及洪涝、干旱等次生灾害近年来频发,严重影响生态系统、人民的生产生活和社会经济发展。本文基于气候变化检测和指数专家组(ETCCDI)定义的10个降水指数,利用中国台站日降水资料,系统分析了1961~2017年中国及九大流域片降水变化情况,并利用空间场显著性检验考察不同降水指数的显著变化是否与外强迫作用有关。结果表明,各降水指数的变化具有区域性特征。整体而言,全国范围内平均降水、降水强度、极端强降水和连续性强降水呈增强趋势的台站数多于呈减弱趋势的台站数,呈显著增强趋势的台站占比不可能仅由气候系统内部变率引起,还受到外强迫的影响。此外,中国大部分站点连续干旱日数(CDD)减少,观测中CDD呈显著减弱趋势的台站占比也与外强迫作用有关。九大流域片中,内陆河片能够观测到平均降水、降水强度、极端强降水和连续性强降水的增多以及连续干旱日数的减少,有洪涝灾害增多的风险,且上述变化可归因为外强迫的作用。长江流域片、东南诸河片和珠海流域片平均降水、极端强降水和连续性强降水均增强,其中强降水的变化与外强迫作用有关。西南诸河片极端强降水增强,但大部分站点CDD呈增加趋势,有干旱增加的风险。黄河流域片、海河流域片、淮河流域片及松辽河流域片的大部分站点及区域平均结果中,降水指数多无显著变化趋势。增暖背景下,不同流域片呈现出不同的降水变化特征,将面临不同的气候灾害风险。  相似文献   

17.
径流量Z指数与Palmer指数对河西干旱的监测   总被引:2,自引:0,他引:2       下载免费PDF全文
利用河西内陆河水文代表站1959-2004年逐月径流量资料、内陆河流域灌溉区1949-2001年耕地面积及代表站1961-2005年的气象资料, 通过对径流量进行正态化处理来确定径流量Z指数, 并以径流量Z指数作为径流干旱指数, 对旱涝等级进行划分; 考虑径流量Z指数的旱涝等级与农业灌溉用水实际情况之间的关系, 给出了径流量Z指数的灌溉指标。将径流量转化为降水量, 改进Palmer旱度模式, 且在作改进后, 又将潜在蒸散量的计算法由利用桑斯威特公式改为利用彭曼公式。结果表明:将径流量考虑到Palmer干旱指数中并改变蒸散量的算法, 使得该指数对河西灌溉区干旱情况的监测均有所改善。对照河西地区的干旱事件, 径流量Z指数监测到的干旱情况, 比Palmer干旱指数改进前、后监测到的干旱情况效果更佳。径流量Z指数能更真实地反映河西灌溉区干旱状况。  相似文献   

18.
Spatial patterns of daily precipitation indices and their temporal trends over Iran are investigated using the APHRODITE gridded daily precipitation dataset for the period 1961–2004. The performance and limitations of the gridded dataset are checked against observations at ten rain-gauge stations that are representative of different climates in Iran. Results suggest that the spatial patterns of the indices reflect the role of orography and sea neighborhoods in differentiating central-southern arid and semi-arid regions from northern and western mountainous humid areas. It is also found that western Iran is impacted by the most extreme daily precipitation events occurring in the country, though the number of rainy days has its maximum in the Caspian Sea region. The time series of precipitation indices is checked for long-term trends using the least squares method and Mann-Kendall test. The maximum daily precipitation per year shows upward trends in most of Iran, though being statistically significant only in western regions. In the same regions, upward trends are also observed in the number of wet days and in the accumulated precipitation and intensity during wet days. Conversely, the contribution of precipitation events below the 75th percentile to the annual total precipitation is decreasing with time, suggesting that extreme events are responsible for the upward trend observed in the total annual precipitation and in the other indices. This tendency towards more severe/extreme precipitation events, if confirmed by other datasets and further analyses with longer records, would require the implementation of adequate water resources management plans in western Iran aimed at mitigating the increasing risk of intense precipitation and associated flash floods and soil erosion.  相似文献   

19.
Indices for extreme events in projections of anthropogenic climate change   总被引:3,自引:2,他引:1  
Indices for temperature and precipitation extremes are calculated on the basis of the global climate model ECHAM5/MPI-OM simulations of the twentieth century and SRES A1B and B1 emission scenarios for the twenty-first century. For model evaluation, the simulated indices representing the present climate were compared with indices based on observational data. This comparison shows that the model is able to realistically capture the observed climatological large-scale patterns of temperature and precipitation indices, although the quality of the simulations depends on the index and region under consideration. In the climate projections for the twenty-first century, all considered temperature-based indices, minimum Tmin, maximum Tmax, and the frequency of tropical nights, show a significant increase worldwide. Similarly, extreme precipitation, as represented by the maximum 5-day precipitation and the 95th percentile of precipitation, is projected to increase significantly in most regions of the world, especially in those that are relatively wet already under present climate conditions. Analogously, dry spells increase particularly in those regions that are characterized by dry conditions in present-day climate. Future changes in the indices exhibit distinct regional and seasonal patterns as identified exemplarily in three European regions.  相似文献   

20.
The reliability of CRU05 rainfall dataset produced by Climatic Research Unit, University of East Anglia is examined against 22 station observations in the northern China. While this dataset has high spatial resolution and long temporal coverage, comparison with station data suggests that it only has higher quality in the last 70 years in the western China. When using this dataset to analyze rainfall variability over the northern China, significant oscillations with periods of 3, 10, and 30 yr are found, with interannual and interdecadal oscillations being the major characteristics of drought and flood events in the region in the last 100 years. Using EOF and REOF analysis, 10 divisions with coherent rainfall variations have been identified, including (i) central Asia and north of Xinjiang, (ii) North China and east of Northwest China,(iii) north and middle of Mongolia, (iv) Hexi Corridor and west of Mongolia, (v)east of the Heilong River,(vi) north of Da Hinggan Mountains, (vii) north of Central Asia, (viii) south of Xinjiang and the Qinghai-Tibetan Plateau, (ix) south of Northeast China, and (x) north of Altay Mountains. Results suggest that the pronounced feature of drought in the arid and semi-arid areas of northern China is not isolated. Of course, it is consistent with rainfall variations in the arid areas of Mongolia and Central Asia. In addition,by analyzing prominent oscillations observed in the last several decades, the trends of rainfall variations over the region in the future 10-15 years are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号