首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distribution of seasonal rainfall in the East Asian monsoon region   总被引:8,自引:1,他引:8  
Summary ?This study deals with the climatological aspect of seasonal rainfall distribution in the East Asian monsoon region, which includes China, Korea and Japan. Rainfall patterns in these three countries have been investigated, but little attention has been paid to the linkages between them. This paper has contributed to the understanding of the inter-linkage of various sub-regions. Three datasets are used. One consists of several hundred gauges from China and South Korea. The second is based on the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP). The two sources of precipitation information are found to be consistent. The third dataset is the NCEP/NCAR reanalysis 850-hPa winds. The CMAP precipitation shows that the seasonal transition over East Asia from the boreal winter to the boreal summer monsoon component occurs abruptly in mid-May. From late March to early May, the spring rainy season usually appears over South China and the East China Sea, but it is not so pronounced in Japan. The summer monsoon rainy season over East Asia commonly begins from mid-May to late May along longitudes of eastern China, the Korean Peninsula, and Japan. A strong quasi-20-day sub-seasonal oscillation in the precipitation appears to be dominant during this rainy season. The end date of the summer monsoon rainy season in eastern China and Japan occurs in late July, while the end date in the Korean Peninsula is around early August. The autumn rainy season in the Korean Peninsula has a major range from mid-August to mid-September. In southern China, the autumn rainy season prevails from late August to mid-October but a short autumn rainy season from late August to early September is noted in the lower part of the Yangtze River. In Japan, the autumn rainy season is relatively longer from mid-September to late October. The sub-seasonal rainfall oscillation in Korea, eastern China and Japan are explained by, and comparable to, the 850-hPa circulation. The strong westerly frontal zone can control the location of the Meiyu, the Changma, and the Baiu in East Asia. The reason that the seasonal sea surface temperature change in the northwestern Pacific plays a critical role in the northward advance of the onset of the summer monsoon rainfall over East Asia is also discussed. Received October 5, 2001; revised April 23, 2002; accepted May 11, 2002  相似文献   

2.
Variability of the Indian summer monsoon is decomposed into an interannually modulated annual cycle (MAC) and a northward-propagating, intraseasonal (30–60-day) oscillation (ISO). To achieve this decomposition, we apply multi-channel singular spectrum analysis (M-SSA) simultaneously to unfiltered daily fields of observed outgoing long-wave radiation (OLR) and to reanalyzed 925-hPa winds over the Indian region, from 1975 to 2008. The MAC is essentially given by the year-to-year changes in the annual and semi-annual components; it displays a slow northward migration of OLR anomalies coupled with an alternation between the northeast winter and southwest summer monsoons. The impact of these oscillatory modes on rainfall is then analyzed using a 1-degree gridded daily data set, focusing on Monsoonal India (north of 17°N and west of 90°E) during the months of June to September. Daily rainfall variability is partitioned into three states using a Hidden Markov Model. Two of these states are shown to agree well with previous classifications of “active” and “break” phases of the monsoon, while the third state exhibits a dipolar east–west pattern with abundant rainfall east of about 77°E and low rainfall to the west. Occurrence of the three rainfall states is found to be an asymmetric function of both the MAC and ISO components. On average, monsoon active phases are favored by large positive anomalies of MAC, and breaks by negative ones. ISO impact is decisive when the MAC is near neutral values during the onset and withdrawal phases of the monsoon. Active monsoon spells are found to require a synergy between the MAC and ISO, while the east–west rainfall dipole is less sensitive to interactions between the two. The driest years, defined from spatially averaged June–September rainfall anomalies, are found to be mostly a result of breaks occurring during the onset and withdrawal stages of the monsoon, e.g., mid-June to mid-July, and during September. These breaks are in turn associated with anomalously late MAC onset or early MAC withdrawal, often together with a large-amplitude, negative ISO event. The occurrence of breaks during the core of the monsoon—from late July to late August—is restricted to a few years when MAC was exceptionally weak, such as 1987 or 2002. Wet years are shown to be mostly associated with more frequent active spells and a stronger MAC than usual, especially at the end of the monsoon season. Taken together, our results suggest that monthly and seasonal precipitation?predictability is higher in the early and late stages of the summer monsoon season.  相似文献   

3.
The 200-hPa wind perturbation (WP) in the subtropical westerly over East Asia (SWEA) has seldom been examined in previous studies, especially in connection with forecast of the summer rainfall in China. Based on the daily NCEP/NCAR reanalysis data and precipitation observations in China from 1 June to 31 August of 1960–2015, this study first systematically analyzes the spatiotemporal distribution features of the 200-hPa WP in the SWEA on different scales, especially during the Meiyu season in the Yangtze–Huaihe region and during the rainy period in North China, by using spectral decomposition and period analysis. It is found that in the 56-yr mean fields, the 200-hPa WP in the SWEA is collocated with the East Asian subtropical jet (EASJ), with the centers of the two systems coincidentally overlapped. The WP filed in the subtropical westerly mainly comprises planetary- and synoptic-scale waves. The quasi-stationary planetary-scale wave seems to determine the shape and intensity of the WP in the SWEA, while the synoptic-scale wave is closely related to the local central intensity of the WP. The daily evolution of the 56-yr mean fields shows that, following the northward (southward) movement of SWEA from 1 June to 31 August, the planetaryscale WP in the SWEA becomes gradually weakened (intensified) whereas the synoptic-scale WP is slightly intensified (weakened).The results also reveal that during the Meiyu season in the Yangtze–Huaihe region, the WP in the SWEA moves northward slowly around 37°–39°N, demonstrating a quasi-biweekly oscillation in its geographic location, which is largely attributed to the strong (weak) planetary-scale (synoptic-scale) component. On the contrast, in the summer rainy season over North China, the WP in the SWEA further strives northward beyond 40°N, showing both quasi-biweekly and weekly oscillations in its position; meanwhile, the planetary-scale wave in the SWEA becomes weakened whereas the synoptic-scale wave is enhanced. These salient variational features of the WP in the SWEA and its scaledependent components may be useful for the medium-range forecast of the rain belt migration in eastern China.  相似文献   

4.
云南雨季的时空特征及与大气环流变化的关系   总被引:2,自引:1,他引:2  
为了系统了解和认识云南雨季变化的气候特征、年际特征及其影响因子,利用云南116个气象观测站1961—2015年20时—20时的逐日降水资料,根据新定义的西南雨季单站标准,系统分析云南雨季变化的时空特征以及相应的大气环流特征。结果表明:(1)对于1981—2010年的气候平均,云南全省平均雨季的开始和结束日期分别为5月22日和10月15日,雨季变化的空间差异较大,雨季开始大致表现为从东南向西北推进,结束则从西北和东南逐渐向西南推进,由此导致云南雨季长度和雨季总降水量变化由南至北逐渐减小;(2)云南雨季变化的年际差异显著,全省平均雨季开始日期最早在5月8日,最晚在6月8日,结束日期最早在9月30日,最晚在11月2日,早晚相差近1个月;(3)云南雨季开始日期主要受西南季风和中纬度冷空气活动的共同影响,季风建立偏早和中纬度冷空气活动频繁有利于雨季开始早,反之有利于雨季开始晚;而雨季结束日期主要受热带季风环流变化的影响,夏季风向冬季风季节转换早则云南雨季结束早,反之雨季结束晚。   相似文献   

5.
SeasonalTransitionofSummerRainySeasonoverIndochinaandAdjacentMonsoonRegionJunMatsumotoDepartmentofGeography,UniversityofTokyo...  相似文献   

6.
On Climate Variations and Changes Observed in South Korea   总被引:1,自引:0,他引:1  
This study describes observations on possible climate changes occurring on the Korean Peninsula. We found that in large urban and industrial areas in Korea, there has been a significant increase in the annual mean temperatures according to data of the past 29 years. The increase in January temperatures was in the order of 0.8 ~ 2.4 ° C. However, in rural and marine stations, the increase in annual mean temperature was 0.6 ° C; the level of the global average. There was also an increase in precipitation: 259 mm over the recent 97 years. Observation has revealed that a month-long steady rainfall in late June and July with a quasi-stationary polar front has not occurred in recent years and has been replaced with scattered convective heavy-showers on a local scale in July and August. It is observed that the behaviour of this rainy front, `the Changma front' has brought changes to rainfall characteristics. Our results highlight the importance of the shortened rainy season. However, the amount of rainfall and the number of heavy rainfall days have increased.  相似文献   

7.
The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in Indochina, India and the South China Sea is also examined using 5-day mean OLR (1975-87) and 850 hPa wind (1980-88) date. It was found that the onset of summer rainy season begins earlier in the inland region of Indochina (Thailand) in late April to early May than in the coastal region along the Bay of Bengal. This early onset of rainy sea-son is due to pre-monsoon rain under the mid-latitude westerly wind regime. The full summer monsoon circulation begins to establish in mid-May, causing active convective activity both over the west coast of Indochina and the cen-tral South China Sea. In case of withdrawal, the earliest retreat of summer rainy season is found in the central northern part of Indochina in late September. The wind field, on the other hand, already changes to easterlies in the northern South China Sea in early September. This easterly wind system covers the eastern part of Indochina where post-monsoon rain is still active. In late October, the wind field turns to winter time situation, but post monsoon rain still continues in the southern part of the Indochina Peninsula until late November  相似文献   

8.
For central India and its west coast, rainfall in the early (15 May–20 June) and late (15 September–20 October) monsoon season correlates with Pacific Ocean sea-surface temperature (SST) anomalies in the preceding month (April and August, respectively) sufficiently well, that those SST anomalies can be used to predict such rainfall. The patterns of SST anomalies that correlate best include the equatorial region near the dateline, and for the early monsoon season (especially since ~1980), a band of opposite correlation stretching from near the equator at 120°E to ~25°N at the dateline. Such correlations for both early and late monsoon rainfall and for both regions approach, if not exceed, 0.5. Although correlations between All India Summer Monsoon Rainfall and typical indices for the El Ni?o-Southern Oscillation (ENSO) commonly are stronger for the period before than since 1980, these correlations with early and late monsoon seasons suggest that ENSO continues to affect the monsoon in these seasons. We exploit these patterns to assess predictability, and we find that SSTs averages in specified regions of the Pacific Ocean in April (August) offer predictors that can forecast rainfall amounts in the early (late) monsoon season period with a ~25% improvement in skill relative to climatology. The same predictors offer somewhat less skill (~20% better than climatology) for predicting the number of days in these periods with rainfall greater than 2.5?mm. These results demonstrate that although the correlation of ENSO indices with All India Rainfall has decreased during the past few decades, the connections with ENSO in the early and late parts have not declined; that for the early monsoon season, in fact, has grown stronger in recent decades.  相似文献   

9.
Summary Monthly rainfall conditions in Israel were determined, using data from 12 stations, during 30 years (1961–90). The definition of a month to be dry, normal or wet, was done using standardized rainfall totals. Pressure departures for each of the three rainfall categories for each month of the rainy season, were calculated and mapped. Correlation between rainfall totals at each of the 12 stations and monthly mean sea level pressure at 72 grid points in the area delimited by the 20° W and 50° E meridians and the 20° N and 60° N parallels, was performed. For each month, 12 correlation maps were prepared (one of each station). Similar maps were averaged together to form coherent rainfall regions. At the beginning of the rainy season (October) the rainfall in Israel is sporadic and spotty without a distinctable coherent region. At the end of the rainy season (April) the rainfall is more widespread, forming a large coherent region covering most of the country. Dry rainfall conditions in Israel, were found to be characterized by positive pressure departures in the eastern Mediterranean and over Israel and/or by easterly or southerly circulation over the eastern Mediterranean. Wet rainfall conditions in Israel, were found to be characterized by negative pressure departures in the eastern Mediterranean and over Israel and/or by westerly or northerly circulation over the eastern Mediterranean. Moreover, in many cases dry conditions in Israel, were associated with below normal pressure conditions over central or western Europe, while wet conditions in Israel, with above normal conditions over the same region, thus, reflecting the so-called Mediterranean Oscillation. Finally, normal rainfall conditions are characterized by very slight to negligible pressure departures over the entire Mediterranean and Europe. Received November 18, 1997 Revised March 3, 1998  相似文献   

10.
The contribution of Cut-off Lows (CoLs) to precipitation and extreme rainfall frequency in South Africa has been quantified from 402 station records over the period 1979–2006. Firstly, 500 hPa CoL trajectories over Southern Africa and surrounding oceans were determined and their features thoroughly analyzed. In a second step, using daily precipitable water, outgoing long wave radiation data and station rainfall records, an area was defined where the occurrence of CoLs is associated with rainfall over South Africa. CoLs transiting in the 2.5°E–32.5°E/20°S–45°S are more likely to produce precipitation over the country. When 500 hPa CoLs are centered just off the west coast of the country (around 15°E/32.5°S) their impact is substantial in term of daily rainfall intensity and spatial coverage. CoL rainy days have been studied and it is shown that they significantly contribute to precipitation in South Africa, more strongly along the south and east coasts as well as inland, over the transition zone between the summer and winter rainfall domains where they contribute between 25 to more than 35 % of annual accumulation. At the country scale, CoL rainfall is more intense and widespread in spring than during other seasons. Over the analyzed period, a significant trend in annual CoLs’ frequency shows an increase of about 25 %. This increase is mainly realized in spring and in a lesser extent in summer. This trend is accompanied by a significant increase in the frequency of CoL rainy days specifically along the south coast and over the East of the country during the spring–summer period. In parallel, it is shown that from late spring until summer CoLs’ frequency varies significantly accordingly with large scale circulation modes of the Southern Hemisphere such as the Pacific South American pattern (PSA). This positive trend in CoLs’ frequency may be related with the positive trend in the PSA during the spring–summer period over the three last decades.  相似文献   

11.
The characteristics of rainfall regime and its variability in the sub-humid region of mid-Ghana is analyzed using daily rainfall data from the Wenchi, 1950–2000. Prior research in the area, suggests that climatic variability occurs at lower frequencies than the typical ENSO signal and may be more closely related to noted shifts in global climatic patterns. Fifty-six possible starting dates encompassing the traditional growing season, extending from late January to early November, at 5 day increments, are used to define temporal units of varying lengths, variable temporal units (VTUs). Rainfall characteristics in each unit are described by two variables: total rainfall and number of rainy days. Given the widely noted global climatic shift in the 1970s and the results of regional analyses, the 50 year record is sub-divided into two 20 year periods, 1950–1969 (period 1) and 1980–2000 (period 2). The means and variances of the two variables in each VTU are compared to identify any times when the changes in rainfall characteristics are most noticeable within the rainfall regime between periods. Both variables yield results consistent with the main rainy season and the long dry season being relatively unchanged, however the short dry spell is becoming wetter and the minor rainy season (September/October) has become significantly drier and shorter. The observations are consistent with the general north–south erosion of the bi-modal regime in West African which is associated with the southward shift of the ITCZ and the monsoonal system. This phenomenon is believed to be ongoing for the last 10,000 years in step with the hypothesized shift of the perihelion into the boreal winter. The use of independent arbitrary starting dates and durations (VTU) advances the understanding of temporal variability of rainfall, at a scale appropriate to agricultural practices in the study area.  相似文献   

12.
Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5–35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.  相似文献   

13.
The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.  相似文献   

14.
This paper aims to study the relationship between large-scale synoptic patterns and rainfall in Khorasan Razavi Province. The adaptive neuro-fuzzy inference system (ANFIS) was used in this study to predict rainfall in the period between April and June in Khorasan Razavi Province. We first analyzed the relationship between average regional rainfall and the changes in synoptic patterns including sea-level pressure, sea-level pressure difference, sea-level temperature, temperature difference between sea level and the 1,000-hPa level, the temperature of the 700-hPa level, the thickness between the 500- and 1,000-hPa levels, the relative humidity at the 300-hPa level, and precipitable water content. We have examined the effect of synoptic patterns in these regions on the rainfall in the northeast region of Iran. Then, the ANFIS in the period 1970–1997 has been taught. Finally, we forecast the rainfall for the period 1998–2007. The results show that the ANFIS can predict the rainfall with reasonable accuracy.  相似文献   

15.
近百年中国东部夏季降水年代际变化特征及其原因   总被引:15,自引:4,他引:11  
本文利用测站降水观测资料分析过去一百多年中国东部华北、长江流域以及华南夏季降水的年代际变化特征发现,尽管这三个地区的夏季降水具有不同的年代际转折时期,但是均同时在1910年代初期、1920年代初期、1940年代中期、1960年代中期、1970年代末期以及1990年代初期发生了跃变。近一百年间不同年代际时期东部夏季降水的分布型主要以南正北负或者南负北正的偶极型为主,并且无论是偶极型分布还是三极型分布,两个相邻年代际时期中国东部降水分布型发生完全反向变化的概率较高(60%)。此外,夏季的PDO、冬季的AO以及春季的北极海冰也同时在1920年代末期、1940年代中期、1970年代末期以及1990年代中期左右发生了跃变,这几次跃变时期与中国东部三个不同地区夏季降水发生跃变的时期一致,表现出近百年来太平洋年代振荡(PDO)、北极涛动(AO)以及北极海冰这三个因子对中国东部夏季降水年代际变化的协同作用。在年代际时间尺度上,夏季的PDO与华北夏季降水显著负相关。PDO的年代际变化能够在500 hPa位势高度场中激发出太平洋—日本(PJ)型年代际遥相关波列;同时在850 hPa风场中激发出类似于影响华北夏季降水年代际变化的大气环流型,从而影响华北降水的年代际变化。冬半年的AO与长江流域夏季降水存在显著正相关关系。冬季到春季正位相的AO导致亚洲大陆南部处于湿冷状态,土壤湿度的记忆性可将这种状态延续到夏季。因此,夏季海陆热力对比减弱,东亚夏季风发生年代际减弱,相应地长江流域的降水年代际增多。春季北极海冰与华南夏季降水显著负相关,北极海冰的年代际异常能在500 hPa位势高度场中激发出与静止Rossby波异常传播相联系的欧亚—华南年代际遥相关波列,从而影响华南降水的年代际变化。  相似文献   

16.
Quality controlled and recently homogenised mean sea level pressure records for the South Pacific are used to specify the location and variability of the South Pacific convergence zone (SPCZ) during the austral warm season (November–April). The SPCZ is the world’s largest rainfall band during the austral summer, when it dominates the climate of the South Pacific. A new index called the South Pacific convergence zone index (SPCZI) is derived, and is shown to be coherent with changes in low level wind convergence associated with the SPCZ. This index replaces the earlier SPCZ position index because it uses higher quality mean sea level pressure data than the superseded index and extends the time series further forward in time. The SPCZI allows interannual to decadal variability in the climate of the South Pacific to be tracked for more than a century from 1910/1911 to 2011/2012. During El Niño episodes the SPCZ is displaced by about 1°–3° east, and La Niña events 1°–3° west of the mean position on average. The index indicates a striking movement eastward for the period 1977/78–1998/99, compared with 1944/45–1976/77 in association with the Interdecadal Pacific oscillation (IPO). The eastward movement of the SPCZ in the late twentieth century is related to significant precipitation trends in the South Pacific region. Since 1998/99 the SPCZ has regressed westward with the negative phase change of the IPO. The long-term trend in the SPCZI is very small relative to the interannual to decadal variability and is not statistically significant, suggesting that there has been little overall change in the mean position of the SPCZ over the past century.  相似文献   

17.
The heavy rainfall in the summer of 1998 over China has been simulated with the NCC Regional Climate Model(RegCM_NCC).It was successful for RegCM_NCC to reproduce the location and seasonal shift of the seasonal rain belt in the summer of 1998 over China.The rainy season in the summer of 1998 over China can be divided into 7 episodes,including the pre-summer rainy season in South China.the Meiyu onset over the Yangtze-Huaihe River Basin,short appearance of North China rain season and the retreat of seasonal rain belt,the second Meiyu season over the Yangtze River Valley,the rainy period over the Yellow and Huaihe River Valley and the seasonal retreat of rain belt over North China.The shortcoming of the RegCM_NCC is over-estimation of precipitation amounts.The regions with large latent heat flux,upper soil moisture and total runoff are located in the rainy area and move with the simulated rain belt during the different episodes.On the contrary,the regions with small sensible heat flux are located in the simulated rainy area and move with the simulated rain belt during the different episodes.  相似文献   

18.
The heavy rainfall in the summer of 1998 over China has been simulated with the NCCRegional Climate Model(RegCM_NCC).It was successful for RegCM_NCC to reproduce thelocation and seasonal shift of the seasonal rain belt in the summer of 1998 over China.The rainyseason in the summer of 1998 over China can be divided into 7 episodes,including the pre-summerrainy season in South China.the Meiyu onset over the Yangtze-Huaihe River Basin,shortappearance of North China rain season and the retreat of seasonal rain belt,the second Meiyuseason over the Yangtze River Valley,the rainy period over the Yellow and Huaihe River Valleyand the seasonal retreat of rain belt over North China.The shortcoming of the RegCM_NCC isover-estimation of precipitation amounts.The regions with large latent heat flux,upper soilmoisture and total runoff are located in the rainy area and move with the simulated rain belt duringthe different episodes.On the contrary,the regions with small sensible heat flux are located in thesimulated rainy area and move with the simulated rain belt during the different episodes.  相似文献   

19.
中国雨季的气候学特征   总被引:43,自引:12,他引:31  
利用中国740站气候平均逐候降雨量对中国的主雨季进行定义,并对雨季(包括主雨季,春雨和秋雨)的气候学特征进行了讨论。结果表明:全国主雨季最早爆发于华南中部,最晚结束于华西地区。主雨季能持续4到14候不等,雨量占年总降水的30%~60%。主雨季在中国东部为季风雨季,自南向北推进;在西部受西风带影响,北方略早于南方, 且局地性强。中国雨季具有明显的区域性和阶段性特征。中国气候的夏季降水时间序列主要反映了季节循环特征, 但气候季节内振荡(CISO)对东部雨季的持续和推进具有明显的调制作用,其中长江中下游及其以南地区以30~60天周期为主。  相似文献   

20.
南海夏季风北推时间及相关环流变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用1958—2004年NCEP/NCAR逐日再分析资料和我国730站降水资料分析了南海夏季风爆发后影响到华南地区的时间差异及其环流变化特征。结果表明:南海夏季风向北推进影响到华南地区的时间存在明显差异,最早的可以1 d就推进影响到华南地区,最晚的却要42 d,并且这种变化具有明显的年代际变化特征,即20世纪70年末以前,南海夏季风影响到华南地区的时间总体上要偏早,而70年代末以后,南海夏季风影响到华南地区的时间总体上要偏晚;当南海夏季风建立后,若东亚大槽较深,冷空气活动较活跃,索马里越赤道气流形成的西南风、110°~120°E地区越赤道气流形成的偏南风以及副热带高压西侧边缘的偏南风均偏弱,南亚高压和东亚地区急流位置偏南,就会使得南海夏季风影响到华南地区的时间偏晚,反之,则偏早;南海夏季风推进影响到华南地区的时间偏晚(早)年期间,索马里、105°E和130°E越赤道气流输送的水汽通量和西太平洋副热带高压南部的东南气流水汽输送均较弱(强),华南地区前汛期的锋面降水较强(弱)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号