首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用1880—1999年中国东部35站的观测降水资料、英国Hadley中心的海温和海平面气压资料以及IPCC第4次评估报告(AR4)中20世纪气候模拟试验(20C3M)的模式输出结果,对IPCCAR4中22个耦合模式所模拟的我国东部夏季降水的年代际变化情况以及太平洋年代际涛动(PDO)和北大西洋涛动(NAO)的年代际变化情况进行了分析。结果显示,这些模式对20世纪我国东部夏季降水年代际变化的模拟结果并不理想,但对降水在20世纪70年代中期前后的突变具有一定的模拟能力。其中IAP_FGOALSL_0_G可以大致模拟出20世纪70年代中期前后降水型的突变特征,而BCCR_BCM2_0和UKMO_HadGEM1则可以模拟出华北地区降水在20世纪70年代中期之后减少的现象。对于引起我国东部夏季降水年代际变化的重要因子PDO和NAO,模式对它们年代际变化的模拟效果略好于降水。多数模式都可以模拟出PDO和NAO的空间模态,其中CNRM_CM3和UKMO_HadGEM1对PDO年代际变化(8 a以上)的模拟与实际情况比较相似,并可以模拟出20世纪70年代中期之后PDO由负位相转变为正位相的情况,而模式UKMO_HadGEM1也对NAO的年代际变化以及1980年以来不断加强的趋势模拟较好。  相似文献   

2.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

3.
DECADAL VARIATIONS IN CLIMATE ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION   总被引:23,自引:2,他引:23  
Large changes in the wintertime atmospheric circulation have occurred over the past two decades over the ocean basins of the Northern Hemisphere, and these changes have had a profound effect on regional distributions of surface temperature and precipitation. The changes over the North Pacific have been well documented and have contributed to increases in temperatures across Alaska and much of western North America and to decreases in sea surface temperatures over the central North Pacific. The variations over the North Atlantic are related to changes in the North Atlantic Oscillation (NAO). Over the past 130 years, the NAO has exhibited considerable variability at quasi-biennial and quasi-decadal time scales, and the latter have become especially pronounced the second half of this century. Since 1980, the NAO has tended to remain in one extreme phase and has accounted for a substantial part of the observed wintertime surface warming over Europe and downstream over Eurasia and cooling in the northwest Atlantic. Anomalies in precipitation, including dry wintertime conditions over southern Europe and the Mediterranean and wetter-than-normal conditions over northern Europe and Scandinavia since 1980, are also linked to the behavior of the NAO. Changes in the monthly mean flow over the Atlantic are accompanied by a northward shift in the storm tracks and associated synoptic eddy activity, and these changes help to reinforce and maintain the anomalous mean circulation in the upper troposphere. It is important that studies of trends in local climate records, such as those from high elevation sites, recognize the presence of strong regional patterns of change associated with phenomena like the NAO.  相似文献   

4.
 Precipitation (P) and freshwater (E-P) fluxes at the air-sea interface are investigated in the Atlantic Ocean sector using the reanalyses of the European Centre for Medium Range Weather Forecasts (ERA) and of the National Centers for Environmental Prediction (NCEP). A canonical correlation analysis method between these fields and sea level pressure (SLP) is used to identify patterns. We also test whether precipitation and freshwater fluxes can be reconstructed from SLP data. In the winter months, patterns associated with both the North Atlantic Oscillation (NAO) and the East Atlantic (EA) mode are identified. The signals are strong enough to be reconstructed from the reanalysis fields, and they correspond to a significant part of the variability. The NAO signal is more robust than the EA one. The NAO-related variability mode is also present when the monthly precipitation rate is averaged for the winter season and even for annual averages. However, in the later case, other variability of natural origin (for instance, ENSO variability) or noise from the model and assimilation system prevents the reconstruction of E-P associated with NAO from SLP variability. Difficulties are identified in the tropical Atlantic with a different behaviour of NCEP and ERA precipitation variability, especially near the Inter Tropical Convergence Zone (ITCZ). The ERA patterns suggest a NAO signature in the tropical Atlantic which has clear monthly patterns and indicates a link between the phase of NAO and changes in the position and intensity of ITCZ. However, the analysis of winter rainfall based on satellite and in situ data does not support the monthly tropical pattern of ERA precipitation although it suggests a relation between convection near 15°S and NAO during northern winter. Received: 10 February 2000 / Accepted: 7 May 2001  相似文献   

5.
本文利用1951—1980年逐季的平均值资料(共120个季)讨论了北方涛动和与其相联系的北太平洋海温与北半球海平面气压场、500hPa位势高度场遥相关的基本结构,并与南方涛动和赤道东太平洋海温的结果进行了对比分析.发现北太平洋Namias海区和加利福尼亚海流区海温的变化与北方涛动具有很密切的联系;北方涛动和这两个海区的海温同北半球中高纬度大气环流特别是PNA型和NAO型环流异常存在明显的遥相关关系;南方涛动和赤道太平洋海温同WP型或NPO型环流异常关系比较密切,而与PNA型和NAO型的关系不如北方涛动和Namias海区及加利福尼亚海流区海温的显著.  相似文献   

6.
利用再分析数据,以在北半球冬季与北大西洋涛动(North Atlantic Oscillation,NAO)相关的向下游传播的准定常波列在欧洲地区是否发生反射为标准,将1957/1958年至2001/2002年这45个冬季分为高纬型和低纬型两类冬季,分别简称为在H型和L型冬季。在H(L)型冬季,和NAO相联系的向下游传播的Rossby波列主要沿高纬度(低纬度)路径传播。对比了在两种类型冬季NAO与同期大气环流、近地面温度(Surface Air Temperature,SAT)、海表面温度(Sea Surface Tempertaure,SST)和降水的关系。结果表明:大气环流方面,在H型冬季,300 hPa位势高度异常在西-西伯利亚和中-西伯利亚西部与NAO呈现正相关,而在L型冬季300 hPa位势高度异常在亚洲东海岸(约40°N)和北太平洋呈现正相关,在H型冬季与NAO相关的经向风异常在中纬度形成波列,而在L型冬季与NAO相关的经向风异常在副热带形成波列;SAT方面,在H型冬季SAT异常在欧亚大陆腹地高纬度地区与NAO呈现正相关,而在L型冬季与NAO相关的SAT异常在欧亚大陆腹地的高纬度地区相对较弱,但NAO造成的SAT异常可以扩展到亚洲东北部;降水方面,H型冬季与L型冬季主要区别在中国南方,在H型冬季降水异常与NAO的关系相对较弱,而在L型冬季降水异常与NAO呈现正相关关系;SST方面,同期SST异常在北大西洋中纬度海域与NAO呈现正相关,而在L型冬季与NAO相关的SST异常在北大西洋中纬度地区相对较弱,在北大西洋北部和南部较强。总体而言,在H型和L型冬季,NAO具有不同下游影响。  相似文献   

7.
ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM   总被引:1,自引:1,他引:0  
The teleconnections of the El Niño/Southern Oscillation (ENSO) in future climate projections are investigated using results of the coupled climate model ECHAM5/MPI-OM. For this, the IPCC SRES scenario A1B and a quadrupled CO2 simulation are considered. It is found that changes of the mean state in the tropical Pacific are likely to condition ENSO teleconnections in the Pacific North America (PNA) region and in the North Atlantic European (NAE) region. With increasing greenhouse gas emissions the changes of the mean states in the tropical and sub-tropical Pacific are El Niño-like in this particular model. Sea surface temperatures in the tropical Pacific are increased predominantly in its eastern part and redistribute the precipitation further eastward. The dynamical response of the atmosphere is such that the equatorial east–west (Walker) circulation and the eastern Pacific inverse Hadley circulation are decreased. Over the subtropical East Pacific and North Atlantic the 200 hPa westerly wind is substantially increased. Composite maps of different climate parameters for positive and negative ENSO events are used to reveal changes of the ENSO teleconnections. Mean sea level pressure and upper tropospheric zonal winds indicate an eastward shift of the well-known teleconnection patterns in the PNA region and an increasing North Atlantic oscillation (NAO) like response over the NAE region. Surface temperature and precipitation underline this effect, particularly over the North Pacific and the central North Atlantic. Moreover, in the NAE region the 200 hPa westerly wind is increasingly related to the stationary wave activity. Here the stationary waves appear NAO-like.  相似文献   

8.
Summary ?The role of the two main European low-frequency oscillations – the East Atlantic/West Russian (EA/WR) and the North Atlantic Oscillation (NAO), in controlling the precipitation in the Eastern Mediterranean region is investigated based on the NCEP/NCAR reanalysis and the Israeli precipitation data for 1958–1998. The data on the EA/WR and NAO indices, received from the NCEP Climate Prediction Center, are also adapted. Composite mean sea level and precipitation anomaly patterns are constructed and analyzed. In addition to the widely investigated positive NAO trend, another, also positive EA/WR trend characterized atmospheric developments during the period. During NAO positive months, the EA/WR-associated positive SLP anomaly areas were shifted from the east Atlantic to southwest Europe. The areas were shifted to the north during the NAO-negative months and were located over central and northern Europe. This demonstrates that the use of fixed pressure NAO patterns may be not the optimum way to understand climate variability. Analysis of the NAO, EA/WR patterns, as well as that of their decadal trends, demonstrated a relationship between the main European oscillations and the EM precipitation. The results allow explanation of the observed reduction of the north Israeli precipitation by the EA/WR positive trend during the period. Received April 5, 2001; Revised February 14, 2002  相似文献   

9.
The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, together with meteorological data fields during 1993-2005. We found that both the North Pacific Oscillation (NPO) and the North Atlantic Oscillation (NAO), the two major teleconnection patterns of the atmospheric surface pressure fields in the Northern Hemisphere, significantly influence the GIS winter elevation change. Further, it is suggested that the NPO may affect the GIS accumulation by influencing the NAO, particularly by changing the intensity and location of the Icelandic Low.  相似文献   

10.
A sign-variable structure of sea surface temperature (SST) anomalies in the high, subtropical, and tropical latitudes of the North Atlantic under the North Atlantic Oscillation index (NAO) values NAO ≥ 1 and NAO ≤ ?1 is considered. A difference in cyclonic activity in winter under extreme values of the NAO is noted. The relation between the NAO anomalies in the areas with maximum cyclonic activity in the North Atlantic and some hydrometeorological quantities in the Crimea is analyzed. Preliminary estimates of the occurrence of a quasi-twenty-year cycle in the variability of processes determined by extreme values of the NAO are presented.  相似文献   

11.
The present paper selects the northern winter of December 1995–February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Niña event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased transient eddy activity, which causes an extension of the subtropical jet eastward from the coast of North America.  相似文献   

12.
冬季北大西洋涛动极端异常变化与东亚冬季风   总被引:70,自引:16,他引:54  
武炳义  黄荣辉 《大气科学》1999,23(6):641-651
依据资料分析发现,冬季北大西洋涛动指数与冬季西伯利亚高压范围呈反向变化关系,冬季北大西洋涛动指数异常偏高(低)时期,30~50oN的亚洲大陆中部气压显著偏低(高),致使冬季西伯利亚高压和东亚冬季风减弱(增强)以及亚洲大陆北部气温显著偏高(低)。冬季西伯利亚高压范围异常变化对北大西洋涛动没有显著的影响,其对北半球海平面气压、850 hPa温度的影响也明显要弱于北大西洋涛动的影响。  相似文献   

13.
The atmospheric low frequency variability at a regional or global scale is represented by teleconnection. Using monthly dataset of the Climatic Research Unit (CRU) for the period 1971–2016, the impacts of four large-scale teleconnection patterns on the climate variability over Southwest Asia are investigated. The large-scale features include the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) teleconnection patterns, as well as western tropical Indian Ocean (WTIO) sea surface temperature anomaly index. Results indicate that ENSO and EA are the first leading modes that explain variation of Southwest Asian precipitation, with positive (negative) anomalies during El Niño (La Niña) and the negative (positive) phase of EA. Variation of Southwest Asian near-surface temperature is most strongly related to WTIO index, with above-average (below-average) temperature during the positive (negative) phase of WTIO index, although the negative (positive) phase of NAO also favours the above-average (below-average) temperature. On the other hand, temperature (precipitation) over Southwest Asia shows the least response to ENSO (WTIO). ENSO and EA individually explain 13 percent annual variance of precipitation, while WTIO index explains 36 percent annual variance of near-surface temperature over Southwest Asia. Analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim) data indicated establishments of negative (positive) geopotential height anomalies in the middle troposphere over Southwest Asia during El Niño (La Niña) or the negative (positive) phase of NAO, EA and WTIO. The response of precipitation variability over Southwest Asia to NAO is opposite to that expected from the geopotential height anomalies, but the correlation between precipitation and NAO is not statistically significant. Due to predictability of large-scale teleconnections, results of this study are encouraging for improvement of the state-of-the-art seasonal prediction of the climate over Southwest Asia.  相似文献   

14.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

15.
Summary Teleconnections associated with changing patterns of temperature and pressure anomalies over Israel during the second half of the 20th century are investigated. Relatively high, statistically significant, correlation coefficients of −0.8 and +0.9 were found between the North Atlantic Oscillation (NAO) Index anomalies and smoothed (5 year running mean) cool season temperature and surface pressure anomalies in Israel, respectively. A relatively high positive correlation, (r = 0.8) was also found between the NAO Index anomalies and smoothed geopotential height of the 1000 hPa pressure level, during the cool season at Bet Dagan radiosonde station located on the Israel Mediterranean coastal plain. Correlation coefficients between NAO Index anomalies and the higher standard pressure levels, 850 and 700 hPa, decrease gradually and become negative (not statistically significant) for the 500 hPa level. Received January 25, 2000/Revised March 6, 2001  相似文献   

16.
春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系   总被引:1,自引:0,他引:1  
利用1951—2016年HadISST逐月海表温度(Sea Surface Temperature,SST)资料,NCEP/NCAR再分析资料以及1958—2016年美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)提供的OAFlux数据集,运用经验正交函数分解(Empirical Orthogonal Function,EOF)和偏相关分析等统计方法,研究了春季北大西洋海温异常的主要特征及其与春季NAO和前期冬季ENSO联系。结果表明:春季北大西洋海温异常EOF的第一模态是自北而南出现的三极结构的海温距平型,其方差贡献率为35.7%。春季北大西洋三极型海温异常的形成主要受到春季NAO主导作用,还受到前期冬季热带中东太平洋海温异常的影响。消除前期冬季Niňo3.4的影响后,春季北大西洋三极型海温异常指数与同期北大西洋涛动(North Atlantic Oscillation,NAO)指数的偏相关系数分别为0.50,通过了99%置信度水平的显著性检验。消除春季NAO的影响后,春季北大西洋三极型海温异常指数与前期冬季Niňo3.4指数的偏相关系数为-0.26,通过了95%信度水平的显著性检验。春季NAO正(负)位相引起的海表风场和海表湍流热通量的异常,进而激发出正(负)位相的北大西洋三极型海温异常。前期冬季ENSO事件可以引起春季大气环流异常和热带外海温异常,进而调制春季NAO对北大西洋三极型海温异常的影响。  相似文献   

17.
Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.  相似文献   

18.
The dominant mode of coupled variability over the South Atlantic Ocean is known as “South Atlantic Dipole” (SAD) and is characterized by a dipole in sea surface temperature (SST) anomalies with centers over the tropical and the extratropical South Atlantic. Previous studies have shown that variations in SST related to SAD modulate large-scale patterns of precipitation over the Atlantic Ocean. Here we show that variations in the South Atlantic SST are associated with changes in daily precipitation over eastern South America. Rain gauge precipitation, satellite derived sea surface temperature and reanalysis data are used to investigate the variability of the subtropical and tropical South Atlantic and impacts on precipitation. SAD phases are assessed by performing Singular value decomposition analysis of sea level pressure and SST anomalies. We show that during neutral El Niño Southern Oscillation events, SAD plays an important role in modulating cyclogenesis and the characteristics of the South Atlantic Convergence Zone. Positive SST anomalies over the extratropical South Atlantic (SAD negative phase) are related to increased cyclogenesis near southeast Brazil as well as the migration of extratropical cyclones further north. As a consequence, these systems organize convection and increase precipitation over eastern South America.  相似文献   

19.
In this study, the association between wintertime temperature anomalies over Northwest China and the weather regime transitions in North Atlantic on synoptic scale is analyzed by using observational surface air temperature(SAT) data and atmospheric reanalysis data. Daily SAT anomaly and duration time are used in order to define SAT anomaly cases. Differences with regard to the circulation anomalies over the Ural Mountains and the upstream North Atlantic area are evident. It is found that the colder than normal SAT is caused by the enhanced Ural high and associated southward flow over Northwest China. Time-lagged composites reveal possible connections between the SAT anomalies and the different development phases of the North Atlantic Oscillation(NAO). The Ural highs tend to be strengthened during the negative phase of NAO(NAO–) to Atlantic ridge transition, which are closely related to the downstream-propagating Rossby wave activity. The opposite circulation patterns are observed in the warm SAT cases. A cyclonic circulation anomaly is distinctly enhanced over the Urals during the positive phase of NAO(NAO+) to Scandinavian blocking transition, which would cause warmer SAT over Northwest China. Further analyses suggest that the intensified zonal wind over North Atlantic would favor the NAO– to Atlantic ridge transition, while the weakened zonal wind may be responsible for the transition between NAO+ and Scandinavian blocking.  相似文献   

20.
 The realism of the Hadley Centre’s coupled climate model (HadCM2) is evaluated in terms of its simulation of the winter North Atlantic Oscillation (NAO), a major natural mode of the Northern Hemisphere atmosphere that is currently the subject of considerable scientific interest. During 1400 y of a control integration with present-day radiative forcing levels, HadCM2 exhibits a realistic NAO associated with spatial patterns of sea level pressure, synoptic activity, temperature and precipitation anomalies that are very similar to those observed. Spatially, the main model deficiency is that the simulated NAO has a teleconnection with the North Pacific that is stronger than observed. In a temporal sense the simulation is compatible with the observations if the recent observed trend (from low values in the 1960s to high values in the early 1990s) in the winter NAO index (the pressure difference between Gibraltar and Iceland) is ignored. This recent trend is, however, outside the range of variability simulated by the control integration of HadCM2, implying that either the model is deficient or that external forcing is responsible for the variation. It is shown, by analysing two ensembles, each of four HadCM2 integrations that were forced with historic and possible future changes in greenhouse gas and sulphate aerosol concentrations, that a small part of the recent observed variation may be a result of anthropogenic forcing. If so, then the HadCM2 experiments indicate that the anthropogenic effect should reverse early next century, weakening the winter pressure gradient between Gibraltar and Iceland. Even combining this anthropogenic forcing and internal variability cannot explain all of the recent observed variations, indicating either some model deficiency or that some other external forcing is partly responsible. Received: 20 August 1998 / Accepted: 12 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号