首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change has become a major global concern and threatens the security of natural environmental resources, including groundwater, especially for Cambodia. In this study, literature reviews related to climate change and groundwater resources in Cambodia were evaluated to address the impact of climate change on the groundwater environment. In Cambodia, global climate change will likely affect available water resources by driving changes in the groundwater recharge and usage pattern. Despite a general increase in the mean annual rainfall, a reduction in rainfall is anticipated during the dry season, which could lead to shortages of fresh water during the dry season. The impact of climate change on water resource environments can significantly affect national economic development. Thus, strategic management plansfor groundwater in response to climate change should be established to ensure the security of water resources in Cambodia.  相似文献   

2.
Groundwater is an important part of the global hydrological cycle. Sustainable utilization of groundwater is related to regional ecological security and food security, especially in arid and semi-arid environments. This paper reviewed the important achievements of the research on groundwater sustainability in arid and semi-arid environments during the past 30 years, and summarized the research progress in groundwater sustainability of arid and semi-arid environments from the conception evolution of groundwater sustainability, evaluation methods, influencing factors, sustainable management, and research frontiers. Our analysis suggests that groundwater in water limited environments around the world has shown unsustainable characteristics both in terms of quantity and quality. However, the existing research focuses more on the quantitative characteristics than the quality characteristics of groundwater, and thus the seriousness of the decline in groundwater sustainability is potentially underestimated. It is pointed out that more research efforts need to be done in the future in balancing the groundwater resources for human and nature, clarifying the impacts of human disturbance and climate change on groundwater sustainability, and strengthening groundwater sustainability through transboundary watershed management. We argued that the difficulty remains how to quantify the sustainable yield of a groundwater basin, and how to assess the groundwater sustainability. Further investigations are required in improving the theoretical framework of groundwater sustainability, modeling the impacts of the various alternative groundwater development scenarios, developing more flexible and efficient indicator frameworks for sustainability evaluation of groundwater system, and deploying more sophisticated groundwater monitoring network for real-time data acquisition. Finally, awareness should also be raised towards ground water sustainability both at the legal level and in the sphere of political action.  相似文献   

3.
黑河流域径流演变规律及区域性水资源优化配置分析   总被引:21,自引:1,他引:21  
胡兴林 《水文》2003,23(1):32-36
经对黑河流域径流演变趋势分析研究得出结论:径流的年际变化因受降水、冰川融水、地下水三种类型混合补给,其年际变化较小,有利于水资源的利用;而径流的年内分配因受季风气候的影响,水热同步,是农业灌溉非常优越的条件,但春季来水较少,经常出现卡脖子旱。过去50年径流的总体趋势是在波动中缓慢增大,未来10年径流仍将继续缓慢增大。根据黑河中下游地区社会、经济持续发展对水资源的需求,提出了区域性水资源优化配置建议。  相似文献   

4.
Groundwater resources have considerable influences on the human population and socioeconomic development of Vietnam and the Mekong River Delta (MRD). This paper presents an overview of the relationship between climate change and groundwater in the MRD, including the challenges, strategies and technical measures. Our results showed that groundwater levels are related to other climate and hydrological variables (i.e., rainfall, river levels, etc.); therefore, the impacts of climate change on the groundwater resources of the Mekong delta are significant, especially on groundwater recharge. Based on the results of this study, it is recommended that groundwater development in the future should focus on reducing groundwater harvesting, enhancing groundwater quantity by establishing artificial works and exploiting surface water. This study suggests that the Artificial Neural Network (ANN) model is an effective tool for forecasting groundwater levels in periods of 1 month and 3 months for aquifers in the natural and tidal regime areas of the delta.  相似文献   

5.
刘丽颖 《中国岩溶》2020,39(5):714-723
探讨气候变化下水资源安全的时空演变规律,对喀斯特地区水资源安全的保障有着重要意义。文章采用GA-BP神经网络模型,研究了贵州省水资源安全的空间分异特征,并分析其对气候要素变化的敏感性。结果表明:(1)研究区水资源安全有较强的空间异质性。2001-2015年,黔南的水资源安全一直是全省最差的地区,贵阳的水资源安全改善最为明显,变化幅度最小的是安顺;(2)当变动率相同时,年平均降雨量的变动对水资源安全的影响最大,其增加10%时水资源安全指数上升0.95%,单位地表水资源量变动的影响其次,单位地下水资源量变动的影响最小;(3)对年平均降雨量变化最为敏感的地区是遵义、毕节、六盘水和黔西南。研究结果可为贵州省水资源的调控和开发提供参考。   相似文献   

6.
Groundwater is an important component of the global freshwater supply and is affected by climate. There is a strong need to understand and evaluate the impacts of climate change over the long term, in order to better plan and manage precious groundwater resources. Turkey, located in Mediterranean basin, is threatened by climate change. The purpose of this study was, through a quantitative overview, to determine the impacts of climate change on the groundwater recharge rates in Küçük Menderes River Basin in western Turkey. According to the data of Ödemi? and Selçuk meteorological stations located in the basin, there is a significantly decreasing trend in precipitation combined with increasing trends in temperature and evaporation observed in 1964–2011. The calculations of groundwater recharge with hydrologic budget method for the observation period showed an approximately 15% decline in groundwater recharge in the basin. Thus, the combined impacts of climate change and excessive groundwater pumping, due to increasing water demand, have caused a significant decline in groundwater levels. Consequently, the proper management of the groundwater resources threatened by climate change requires effective governance to both mitigate the adverse impacts of climate change and facilitate the adaptation of sustainable integrated water management policies.  相似文献   

7.
Anthropogenic climate change is the Earth's most serious large-scale environmental concern. While the projected changes of global temperatures, rainfall and surface water have been modelled in a sophisticated manner, the impact on groundwater resources is much less well constrained. In southeast Australia, the decrease in rainfall amount and an increase in temperature that are predicted by climate models are generally assumed to reduce the amount of recharge to the groundwater systems. However, the increase in recharge that has resulted from clearing of the native vegetation will almost certainly produce a greater impact on the groundwater system, increasing quantity and potentially improving quality. Additionally, the impact on recharge of changes to rainfall frequency rather than just total amount is not well documented. Overall our understanding of the impacts of climate change on groundwater systems is insufficiently advanced to make firm predictions. Indirect impacts of climate change, particularly the projected increased demand for groundwater or surface water to supplement surface water supplies also will have a major impact that may be greater than the direct effect of climate change.  相似文献   

8.
The average temperature of Thailand is projected to increase by 2-3 °C, and the annual rainfall is projected to increase by 25% and up to 50% in certain areas. The climate change in future is expected to provide changes in hydrological cycle and therefore impacts the groundwater resources too. In this study, we analyzed the general climate change trends and reviewed the groundwater conditions of Thailand. The climate changes, hydrologic variability and the impact of climate change on groundwater sustainability are also discussed based on a national groundwater monitoring program. Currently, there are 864 groundwater monitoring stations and 1 524 monitoring wells installed in Thailand. Moreover, the impact of climate change on groundwater-dependent systems and sectors is also discussed according to certain case studies, such as saline water intrusion in coastal and inland areas. Managing aquifer recharge and other projects are examples of groundwater adaptation project for the future.  相似文献   

9.
Climate change affects not only water resources but also water demand for irrigation. A large proportion of the world’s agriculture depends on groundwater, especially in arid and semi-arid regions. In several regions, aquifer resources face depletion. Groundwater recharge has been viewed as a by-product of irrigation return flow, and with climate change, aquifer storage of such flow will be vital. A general review, for a broad-based audience, is given of work on global warming and groundwater resources, summarizing the methods used to analyze the climate change scenarios and the influence of these predicted changes on groundwater resources around the world (especially the impact on regional groundwater resources and irrigation requirements). Future challenges of adapting to climate change are also discussed. Such challenges include water-resources depletion, increasing irrigation demand, reduced crop yield, and groundwater salinization. The adaptation to and mitigation of these effects is also reported, including useful information for water-resources managers and the development of sustainable groundwater irrigation methods. Rescheduling irrigation according to the season, coordinating the groundwater resources and irrigation demand, developing more accurate and complete modeling prediction methods, and managing the irrigation facilities in different ways would all be considered, based on the particular cases.  相似文献   

10.
It is important to predict how groundwater levels in an aquifer will respond to various climate change scenarios to effectively plan for how groundwater resources will be used in the future. Due to the overuse of groundwater resources and the multi-year drought in the Kerdi-Shirazi plain in Iran, some land subsidence and a drop in groundwater levels has taken place, and without active management, further degradation of the groundwater resource is possible under predicted future climate change scenarios in the country. To determine the potential impacts of climate change on groundwater levels in the region, the groundwater model GMS was coupled with the atmospheric circulation model HADCM3 using scenarios A1B, A2 and B1 for the period 2016–2030. The results of the climate modelling suggest that the Kerdi-Shirazi plain will experience an increase in minimum temperature and maximum temperature of, respectively, between 0.03 and 0.47, and 0.32–0.45 °C for this time period. The results of the groundwater modelling suggest that water levels on the Kerdi-Shirazi plain will continue to decline over the forecast period with decreases of 34.51, 36.57 and 33.58 m being predicted, respectively, for climate scenarios A1B, A2 and B1. Consequently, groundwater resources in the Kerdi-Shirazi plain will urgently need active management to minimize the effects of ongoing water level decline and to prevent saltwater intrusion and desertification in the region.  相似文献   

11.
Groundwater resource estimates require the calculation of recharge using a daily time step. Within climate-change impact studies, this inevitably necessitates temporal downscaling of global or regional climate model outputs. This paper compares future estimates of potential groundwater recharge calculated using a daily soil-water balance model and climate-change weather time series derived using change factor (deterministic) and weather generator (stochastic) methods for Coltishall, UK. The uncertainty in the results for a given climate-change scenario arising from the choice of downscaling method is greater than the uncertainty due to the emissions scenario within a 30-year time slice. Robust estimates of the impact of climate change on groundwater resources require stochastic modelling of potential recharge, but this has implications for groundwater model runtimes. It is recommended that stochastic modelling of potential recharge is used in vulnerable or sensitive groundwater systems, and that the multiple recharge time series are sampled according to the distribution of contextually important time series variables, e.g. recharge drought severity and persistence (for water resource management) or high recharge years (for groundwater flooding). Such an approach will underpin an improved understanding of climate change impacts on sustainable groundwater resource management based on adaptive management and risk-based frameworks.  相似文献   

12.
Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater–saltwater interfaces’ comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr?1.  相似文献   

13.
吴斌  王赛  王文祥  安永会 《中国地质》2019,46(2):369-380
基于物理过程的地表-地下水耦合模型能全面、系统地刻画流域水循环过程,并为水资源管理提供详细信息。同时,未来水资源的变化趋势受到气候变化的影响显著,在未来气候情景下水资源如何变化将影响水资源管理措施。本文以黑河中游盆地为例,基于地表水-地下水耦合模型GSFLOW,评估区域水资源对气候变化的响应,预测未来气候情景(CMIP5)下区域水资源变化趋势,为西北干旱区水资源管理提供参考。研究表明:(1)GSFLOW模型能很好地模拟黑河中游盆地复杂的水循环过程。(2)在中等排放强度(RCP4.5)下,平均每年降水上升0.6 mm,温度上升0.03℃,地下水储量减少0.38亿m3;在高排放强度(RCP8.5)下,降水上升0.8 mm,温度上升0.06℃,地下水储量减少0.34亿m3。  相似文献   

14.
南皮县淡水资源严重短缺,制约工农业与经济社会的发展.春季开采浅层地下水包括微咸水和半咸水抗旱灌溉,腾出地下含水层空间;汛期增加降雨入渗,减少径流流失,防渍防涝,把时空分布不均的天然降雨转化为地下水资源;秋冬利用河道沟渠引蓄河水补源,淡化地下水质,增加地下水可采量.地上水地下水联合运用,保持水资源采补平衡.实现旱涝碱咸综合治理、水资源可持续利用与经济社会可持续发展.  相似文献   

15.
Chittur block represents a mid-land region of Palakkad district, Kerala and the block differs from the rest of the blocks in its climate and availability of groundwater. About 75% of the people depend on agriculture for their livelihood. Results showed that groundwater salinity levels (up to 1,963 mg/L TDS),fluoride (up to 6.3 mg/L) and nitrate (up to 141 mg/L) contents have increased significantly in tandem with the increase in groundwater abstraction. Before human intervention the chemical weathering of gneisses and granites was the main process impinging on the chemical signature of groundwater. The initial chemical equilibrium conditions change with increasing groundwater withdrawal rates and fertilizer input, in a milieu of lower natural groundwater recharge. The appearance of higher levels of bicarbonate, linked to denitrification processes, and the decrease in calcium, due to calcite precipitation, can lead to increased content of sodium and fluoride in groundwater. In this scenario the use of groundwater resources for human consumption and agriculture represents a public health risk if water management actions do not change the trend in water use in the near future. The potential loss of fertile soil by groundwater salinization must also be considered when planning sustainable policies in a region with over dependence on groundwater resources.  相似文献   

16.
The terrestrial water cycle is the mutual transformation of surface and near-surface water, which controls the supply of fresh water resources. It is affected by human activities, solar radiation and gravity, as well as climate and environmental conditions. Inter-basin water transfer, irrigation, crop cultivation and harvesting, exploitation of groundwater water and other human activities lead to the change of spatial and temporal distribution of soil moisture, the underground water level, surface albedo, surface evaporation, as well as water and energy exchange between land surface and atmosphere. Human water use generates important feedback on the climate and changes the processes of the terrestrial water cycle significantly. The spatial and temporal distribution of precipitation in China is uneven. In addition, human activities further exacerbate the fragility of water resources and the contradiction between supply and demand, posing a serious challenge to the sustainable development of social economy. Therefore, understanding the laws and mechanisms of terrestrial water cycle change is very important for water resources utilization and human sustainable development. From the perspective of climate change and human activities, this paper summarized the impact of human activities on terrestrial water cycle and the progress of climate feedback research. It is urgent to consider the evolution of terrestrial water cycle and its climate under the dual impact of natural and human activities, and develop the large-scale land surface hydrological models and climate models with human water use, crop planting and irrigation, lateral groundwater flow. From the perspective of a fully coupled system, we need quantitatively to assess the climate feedback of human water use and its impact on the terrestrial water cycle process, and to explore its mechanism. We need to distinguish the contribution of human water activities and global climate change to the evolution of terrestrial water cycle in the context of climate change, and to propose water resources management strategies to address climate change.  相似文献   

17.
地下水对气候变化的敏感性研究进展   总被引:4,自引:0,他引:4  
地下水是人类生活、生产、生态用水的重要水源。地下水含水层的补给及其开发利用是水资源可持续开发利用与管理的重要组成部分。浅层地下水的补给主要受制于气候变异与变化。气候变化影响研究从地表水扩展至地下水不仅有利于正确地评估可利用的淡水资源,而且对于改进气候模型,更完整的描写水文循环有重要的科学意义。自21世纪以来,欧美等国开始研究不同时空尺度的地下水补给的定量估算方法,并在气候变化对水资源影响的研究中,考虑了气候变化与人类活动对地下水补给的影响。目前在我国,无论对地下水观测资料的诊断分析,或对地下水补给模型的研制都尚属空白或起步阶段。本文对当前国际上研究地下水补给以及地下水对气候变化敏感性的研究现状予以综述,目的是为了推动我国关于气候变化对水资源影响的深入研究。  相似文献   

18.
变化环境对城市暴雨及排水系统影响研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来,变化环境(气候变化和城镇化)导致城市暴雨的发生频率或强度增加,加剧了城市暴雨洪涝问题。因此,分析变化环境对城市暴雨及排水系统的影响对城市水资源规划管理、市政规划设计和城市防灾减灾有着重要意义。总结了未来高精度降雨预估技术、变化环境下排水系统设计标准等关键问题的研究进展,综述了变化环境下城市短历时暴雨演变规律及变化环境对城市排水系统影响的研究现状,探讨了变化环境对城市短历时暴雨的影响机理,并归纳了当前研究变化环境对城市暴雨及排水系统影响的主要方法。指出今后应重点加强的研究:①加强气候变化和城镇化对城市短历时暴雨影响机制的研究;②提升区域气候模式对城市区域下垫面和大气相互作用的描述能力,并加强公里尺度对流可解析模型在城市气候变化影响研究中的应用;③加强对变化环境下排水系统设计标准的研究;④综合评估气候变化和城镇化对城市排水系统超载、污染物转移和水安全等的影响。  相似文献   

19.
Ecohydrology of Groundwater Dependent Ecosystems: A Review   总被引:2,自引:0,他引:2  
Groundwater Dependent Ecosystems (GDEs) are ecosystems that must have access to groundwater to maintain their ecological structure and function. In other words, the vegetation dynamics moisture dynamics, and water-salt balance in GDEs are significantly affected by and directly related to the groundwater. This work reviews the most recent research advances in the ecohydrology of GDEs from: ①the interactions between groundwater and vegetation, ②the interactions between groundwater and soil moisture dynamics in the vadose zone, the interactions between ground and ③surface-water systems, ④the interactions between groundwater and salt accumulation dynamics, ⑤the responses of GDEs to climate changes and human disturbances, and ⑥the ecohydrological modeling works toward sustainable management of GDEs. It is pointed out that several issues need to be taken into account in the managements of GDEs, i.e., how does the vegetation of GDEs response to fluctuations and decreases in the groundwater level, whether there is a catastrophic loss of the functions of GDEs, and what is the threshold value below which such a catastrophe may occur. The key to solving those issues lies in how to delineate the different ecohydrological processes occurred in the soil medium from the top of the ground surface to the water table. Therefore, observation and modeling efforts are needed and will be important research priorities in the future, especially for GDEs in arid environments. We also argued that four more difficulties should be addressed towards sustainable management of GDEs in future: ①how to identify GDEs in the field, and determine which habitats and species are reliant on groundwater for their persistence in the landscape, ②what groundwater regime is required to sustain the existence of GDEs, ③how to manage GDEs with limited social resources, and ④what measures of ecosystem function can be monitored to determine that management is effective?  相似文献   

20.
气候变化对中国水资源情势影响综合分析   总被引:27,自引:4,他引:23       下载免费PDF全文
介绍了近年在气候变化对中国水资源影响研究方面的若干进展。研究表明,中国水资源问题的产生不仅与人口和社会经济快速发展有联系,更与气候环境的显著变化密切相关;未来的气候变化将会导致一些流域水资源更加短缺和洪涝灾害更加频繁,对流域水资源和可持续发展产生重要影响;在流域水资源综合规划与管理中,应十分重视气候变化的影响问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号