首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Ca’ Lita landslide is a large and deep-seated mass movement located in the northern Apennines, about 70 km west of Bologna (Northern Italy). It consists of a composite landslide that affects Cretaceous to Eocene flysch rock masses and chaotic complexes. Many of the sectors making up the landslide have resumed activity between 2002 and 2006, threatening some villages and an important road connecting several key industrial facilities located in the upper watershed. This paper presents the management of the emergency, dealing with the investigation campaigns (geological, geomorphological and LiDAR surveys, borehole drillings, seismic surveys), with the monitoring (in situ instrumentation) and with the design and construction of mitigation measures. The whole process, from landslide reactivation to date, has been modelled on a numerical basis with the finite difference code FLAC 2D, to assess the efficiency of the mitigation system and to propose further countermeasure works in different scenarios.  相似文献   

2.
It is possible to monitor slow-moving landslides and assess landslide stabilisation measures over protracted periods using an optical–mechanical crack gauge called a TM-71. This technical note outlines the theoretical background to the gauge and illustrates its practical application through a number of case studies. These studies are drawn from a range of landslide types and stabilisation measures. In terms of monitoring slow-moving landslides, three studies of deep-seated deformations are presented. The Taukliman coastal landslide on the Black Sea Coast is characterised by vertical and horizontal displacements of up to 0.2?mm?year?1 and sudden earthquake-induced dilations of up to 6?mm. The Parohy ridge spreading landslide in the Malá Fatra Mountains is characterised by gravitationally induced vertical displacements of 0.7?mm?year?1. The slope deformation that formed Cyrilka Cave in the Beskydy Mountains is characterised by very slow sinistral strike–slip movements of 0.8?mm?year?1. In terms of assessing landslide stabilisation measures, two studies are presented from Orava Castle in Slovakia and Tetín in the Czech Republic. The data recorded at these sites demonstrate that the constructed stabilisation measures have successfully alleviated the potential landslide hazard in both localities. These case studies clearly demonstrate that the gauge represents an important tool with which to monitor slow-moving landslides and assess landslide stabilisation measures. It is able to provide a precise three-dimensional record of deformation, withstand harsh environmental conditions, and record reliable data over protracted periods.  相似文献   

3.
The study of deep-seated gravitational slope deformations (DSGSD) in Mexico is scarce; therefore, their localization and causes are highly overlooked. The present paper examines the characterization of the DSGSD of Jungapeo and Las Pilas in eastern Michoacan state, currently active and endangering their inhabitants. An integrated study, including detailed lithology, morpho-structural inventories, analysis of land use, and pluviometric regime, was performed and complemented with differential global positioning system monitoring networks. Both landslides developed over highly weathered volcano-sedimentary rocks. On the one hand, the Jungapeo landslide has an estimated volume of 990,455 m3 with steady decreasing velocity rates from 41 to 15 cm/month in the first monitoring period to 13–3 cm/month in the last one. On the other hand, the Las Pilas landslide estimated volume is about 1,082,467 m3 with a stable velocity rate of 1.3 to 0.1 cm/month. Despite the multi-storeyed style of activity, two behaviors of instability were distinguished: slow deformation and secondary landslide stages. The conditioning factors for slow deformation in both DSGSD are the combination of weathered lithology with clay- and sand-rich content, and the shift toward intensive monoculture. The triggering factor is related to excess water produced by an inefficient flood-irrigation system that also generates an atypical acceleration behavior in both landslides during the dry season. The DSGSD activity thus predisposes the generation of tension cracks and secondary scarps from which the collateral landslides are triggered by atypical rainfall, such as that of 2010.  相似文献   

4.
Since the impoundment of the Three Gorges Reservoir in June 2003, numerous preexisting landslides have been reactivated. This paper seeks to find the factors influencing landslide deformation and the relationship between displacement and fluctuation of the reservoir water level, while the displacement and the intensity of rainfall based on monitoring data; 6 years of monitoring were carried out on the Shiliushubao landslide, a old landslide, consisting of a deep-seated main block and two shallow blocks, with a volume of 1,180 × 104 m3 and located on the left bank of the Yangtze River, 66 km upstream of the Three Gorges dam. This landslide was reactivated by the impoundment and since then the landslide body has been experiencing persistent deformation with an observed maximum cumulative displacement of 8,598.5 mm up to December 2009. Based on the monitoring data, we analyzed the relationship between the fluctuation of the reservoir water level and displacement, rainfall and displacement, and found that the rainfall is the major factor influencing deformation for two shallow blocks and the displacement has a positive correlation with the variation of rainfall intensity. The fluctuation of the reservoir water level is the primary factor for main block, and the deformation rate has a negative correlation with the variation of reservoir water level, declined with the rise of the water level and increased with the drawdown of the water level.  相似文献   

5.
The 10-mile Slide is contained within an ancient earthflow located in British Columbia, Canada. The landslide has been moving slowly for over 40 years, requiring regular maintenance work along where a highway and a railway track cross the sliding mass. Since 2013, the landslide has shown signs of retrogression. Monitoring prisms were installed on a retaining wall immediately downslope from the railway alignment to monitor the evolution of the retrogression. As of September 2016, cumulative displacements in the horizontal direction approached 4.5 m in the central section of the railway retaining wall. After an initial phase of acceleration, horizontal velocities showed a steadier trend between 3 and 9 mm/day, which was then followed by a second acceleration phase. This paper presents an analysis of the characteristics of the surface displacement vectors measured at the monitoring prisms. Critical insight on the behavior and kinematics of the 10-mile Slide retrogression was gained. An advanced analysis of the trends of inverse velocity plots was also performed to assess the potential for a slope collapse at the 10-mile Slide and to obtain further knowledge on the nature of the sliding surface.  相似文献   

6.
A methodology for monitoring system of an impoundment-induced landslide in Three Gorges Reservoir Area, China is introduced. Currently, based on landslide geological classification, the monitoring regions and methods which include types of monitoring instruments, placement and calibration precision of instruments, and appropriate periods for instrumental placement is confirmed. To optimize the monitoring system, sensitivity analysis of displacements and the water table in landslides affected by reservoir surface fluctuation is completed to determine the layout of the monitoring cross sections and the monitoring points. As a case study, the behavior of displacements and the potential fluctuation of the water table in the Shiliushubao landslide, produced by the gradual water impoundment at Three Gorges Reservoir, has been simulated using 3D finite element method analysis. The sensitivity analysis of Shiliushubao landslide is investigated by the fuzzy set evaluation method. As a result, the monitoring network of Shiliushubao landslide is established.  相似文献   

7.
The prediction of landslide movement acceleration is a complex problem, among others identified for deep-seated landslides, and represents a crucial step for risk assessment. Within the scope of this problem, the objective of this paper is to explore a modelling method that enables the study of landslide function and facilitates displacement predictions based on a limited data set. An inverse modelling approach is proposed for predicting the temporal evolution of landslide movement based on rainfall and displacement velocities. Initially, the hydrogeology of the studied landslides was conceptualised based on correlative analyses. Subsequently, we applied an inverse model with a Gaussian-exponential transfer function to reproduce the displacements. This method was tested on the Grand Ilet (GI) and Mare-à-Poule-d’Eau (HB) landslides on Reunion Island in the Indian Ocean. We show that the behaviour of landslides can be modelled by inverse models with a bimodal transfer function using a Gaussian-exponential impulse response. The cumulative displacements over 7 years of modelling (2 years of calibration period for GI, and 4 years for HB) were reproduced with an RMSE above 0.9. The characteristics of the bimodal transfer function are directly related to the hydrogeological functioning demonstrated by the correlative analyses: the rapid reaction of a landslide can be associated with the effect of a preferential flow path on groundwater level variations. Thus, this study shows that the inverse model using a Gaussian-exponential transfer function is a powerful tool for predicting deep-seated landslide movements and for studying how they function. Beyond modelling displacements, our approach effectively demonstrates its ability to contribute relevant data for conceptualising the sliding mechanisms and hydrogeology of landslides.  相似文献   

8.
The western part of the Argentera–Mercantour massif (French Alps) hosts very large currently active landslides responsible of many disorders and risks to the highly touristic valleys of the Mercantour National Park and skiing resorts. A regional scale mapping of gravitational deformations has been compared to the main geo-structures of the massif. A relative chronology of the events has been established and locally compared to absolute 10Be dating obtained from previous studies. Two types of large slope destabilisations were identified as follows: deep-seated landslides (DSL) that correspond to rock volumes bounded by a failure surface, and deep-seated gravitational slope deformations (DSGSD) defined as large sagging zones including gravitation landforms such as trenches and scarps or counterscarps. Gravitational landforms are mainly collinear to major N140°E and N020°E tectonic faults, and the most developed DSGSD are located in areas where the slope direction is comparable to the orientation of faults. DSL are mostly included within DSGSD zones and located at the slopes foot. Most of DSL followed a similar failure evolution process according to postglacial over steepened topographies and resulting from a progressive failure growing from the foot to the top of the DSGSD that lasts over a 10 ky time period. This massif-scale approach shows that large-scale DSGSD had a peak of activity from the end of the last deglaciation, to approximately 7000 years bp. Both morphologic and tectonic controls can be invoked to explain the gravitational behaviour of the massif slopes.  相似文献   

9.
In active landslides, the prediction of acceleration of movement is a crucial issue for the design and performance of warning systems. The landslide of Vallcebre in the Eastern Pyreenes, Spain, has been monitored since 1996 and data on rainfall, groundwater levels and ground displacements are measured on a regular basis. Displacements observed in borehole wire extensometers have shown an immediate response of the landslide to rainfall episodes. This rapid response is likely due to the presence of preferential drainage ways. The occurrence of nearly constant rates of displacement in coincidence with steady groundwater levels suggests the presence of viscous forces developed during the movement. An attempt to predict both landslide displacements and velocities was performed at Vallcebre by solving the momentum equation in which a viscous term (Bingham and power law) was added. Results show that, using similar rheological parameters for the entire landslide, computed displacements reproduce quite accurately the displacements observed at three selected wire extensometers. These results indicate that prediction of displacements from groundwater level changes is feasible.  相似文献   

10.
Interferometric synthetic aperture radar data from ERS and ENVISAT sensors were utilized in the analysis of the post-failure deformations in the area of Lubietova town in Central Slovakia. The catastrophic landslide of 1977 together with surrounding landslides in the Lubietova area were analysed with the help of persistent scatterers (PS) technique in order to evaluate recent and past deformations of the unstable slopes. Although long-term precise geodetic monitoring of the 1977 landslide revealed differential deformations inside the sliding mass, due to the lack of the PS located inside the landside caused by temporal decorrelation, unfortunately, these records could not be directly compared. The adjacent landslides with sufficient number of PS were analysed by transformation of the line of sight displacements recorded by the sensors to the slope vector direction. This procedure allowed identification of the precise boundaries of the actively moving landslide parts and the updating of the landslide inventory for the Lubietova area.  相似文献   

11.
The site investigation of low-gradient slopes composed by marly rocks usually focuses on shallow slides in weathered mantling material as it is assumed that the underlying bedrock has higher strength, but deeper investigations may reveal larger, active, deep-seated movements. A typical example of this is found in Montemartano (Perugia, Central Italy). Here aerial photo interpretation and field observations indicate that active movements involve the shallower portion of the slope, formed by a very old and large landslide body extending over an area of about 0.5 km2. Borehole core logging and probe inclinometer monitoring reveal that the area corresponding to the deep-seated landslide is moving at a maximum rate of 70 mm/year down to a maximum depth of 40 m. A comparison of inclinometer and piezometer data indicates that the movement seasonally reactivates even when rainfall and piezometer levels are below average values and suggests that structural setting of the whole slope influences both groundwater flow and movement kinematics. This hypothesis is reinforced by seepage analyses and stability analyses yielding a mobilized shear strength close to residual strength of the clayey interbeds of the marly limestone formations. This implies that instability occurs along bedding over a large part of the slide. The importance of these phenomena in land management policy is discussed and the critical aspects of their investigation and monitoring are addressed. The reconstruction of landslide geometry/stratigraphy and geotechnical characterization of the materials is closely considered, particularly as these are complicated by the limited representativeness of field and laboratory investigations in this type of material.  相似文献   

12.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

13.
In this work we analyse the performance of advanced land observing satellite (ALOS) phased array type L-band syntetic aperture radar (PALSAR) images for mapping and monitoring of very slow landslides using conventional differential interferometry in the Tena Valley (Central Pyrenees, Spain). These results are compared with those retrieved in previous works where multi-band advanced differential interferometric synthetic aperture radar (DInSAR) analysis was performed for the same area using PSI techniques. The study area is largely underlain by slates (ca. 80 %) where large deep-seated very slow earth flows are dominant. The results reveal that DInSAR analysis is able to measure displacements of landslides with a greater spatial coverage than PSI analysis, but for a lower amount of them (nine against 51). Overall, the combination of the DInSAR and multi-band PSI analysis permitted to map and monitor 68 % of the landslides in Tena Valley. From this amount, 63 landslides are considered as active. The main advantage of DInSAR with respect to PSI analysis is the capability to detect faster movements (up to 145 cm?year?1) derived from the 46 days interferograms. That is the case of Sextas and La Selva landslides where an acceleration of the moving mass was measured after intense rainfall periods producing major damages to linear infrastructures. The combination of measured displacement from ALOS interferograms, with the observed damages on the A-136 road, was useful to assess the potential damage that could cause these slow movements. In general, it is demonstrated that even though PSI analysis provides a better performance in terms of landslide mapping, L-band DInSAR analysis provides an added value for landslide hazard assessment through radar remote sensing. For this reason it is necessary to encourage the launch of new satellite missions similar to ALOS PALSAR that could operate with shorter revisiting time periods.  相似文献   

14.
Tsaoling is located in Southwestern Taiwan, 10 km east of the frontal thrusts of the mountain belt. Five large historical landslide events were recorded from 1862 to 1999. No details of the earliest landslide event (1862) are available, thus this paper deals with the 1941 landslide event. Using the Particle Flow Code in two dimensions (PFC 2D) to simulate the mechanism of the Tsaoling landslide in 1941, this study shows that the landslide block developed cracks and slid down 0.2–1.8 m on the sliding plane. The cracks concentrated in certain zones, which corresponded to future landslide detachment planes. During the vibration simulation, the cracks spread from the shear plane to ground surface. Monitoring the variations of the displacements, velocity, and stress during vibration simulation showed that the peak velocity and stress in the transition zones occurred at 3 s. The displacement of the left part of the block exceeded 1.3 m, and the displacement of the right part was less than 1.3 m during vibration simulation. These results suggest that the left part of the block was pushed down by the right part, ultimately inducing a landslide during an earthquake.  相似文献   

15.
Large landslides and deep-seated gravitational slope deformations (DSGSD) represent an important geo-hazard in relation to the deformation of large structures and infrastructures and to the associated secondary landslides. DSGSD movements, although slow (from a few millimetres to several centimetres per year), can continue for very long periods, producing large cumulative displacements and undergoing partial or complete reactivation. Therefore, it is important to map the activity of such phenomena at a regional scale. Ground surface displacements at DSGSD typically range close to the detection limit of monitoring equipment but are suitable for synthetic aperture radar (SAR) interferometry. In this paper, permanent scatterers (PSInSAR?) and SqueeSAR? techniques are used to analyse the activity of 133 DSGSD, in the Central Italian Alps. Statistical indicators for assigning a degree of activity to slope movements from displacement rates are discussed together with methods for analysing the movement and activity distribution within each landslide. In order to assess if a landslide is active or not, with a certain degree of reliability, three indicators are considered as optimal: the mean displacement rate, the activity index (ratio of active PS, displacement rate larger than standard deviation, overall PS) and the nearest neighbor ratio, which allows to describe the degree of clustering of the PS data. According to these criteria, 66% of the phenomena are classified as active in the monitored period 1992–2009. Finally, a new methodology for the use of SAR interferometry data to attain a classification of landslide kinematic behaviour is presented. This methodology is based on the interpretation of longitudinal ground surface displacement rate profiles in the light of numerical simulations of simplified failure geometries. The most common kinematic behaviour is rotational, amounting to 41 DSGSDs, corresponding to the 62.1% of the active phenomena.  相似文献   

16.
The Tochiyama landslide is one of several complex, deep-seated and large-scale landslides occurring in the Hokuriku Province in central Japan. The landslide is about 2 km long and about 500–1100 m wide; it occupies an area of approximately 150 ha and has a maximum depth of 60 m. The slide developed on a dip-slope structure, and is divisible into three layers in ascending order: older landslide debris and avalanche deposits, younger debris-avalanche deposits, and talus. The landslide complex is still active. A triangulation point on the upper part of the landslide shifted downhill by 3.3 m from 1907 to 1983, indicating an average rate of 4.3 cm/y. In 1991, the average rate of movement on the sliding surface was also 4.3 cm/y as measured by an automatic system with inclinometers installed in borehole No. 1–2. The rate measured for borehole No. 1–3, located 380 m upslope from No. 1–2, was over twice that of No. 1–2 for the same period; it has since accelerated to about 19 cm/y. Thus current movements on the basal sliding surface are inhomogeneous; the head of the slide complex is increasing the horizontal granular pressures on the lower part of the slide block.

On the basis of dating of two tephra layers and14C dating of carbonized wood intercalated within the landslide body, two stages of slide movement have been distinguished. The earlier occurred between about 46,000 to 25,000 years ago, and the latter occurred since 1361 A.D. The following sequence of events is inferred. During the middle Pleistocene, intense tectonic movements occurred in the Hokuriku Province, and as a consequence dip-slopes were developed in the Tochiyama landslide area. Low-angle fault planes (possibly representing slump features) and fracture zones then developed within flysch deposits underlying the landslide area, causing a reduction in shear strength. The erosion base level was lowered during the Würm glacial age, and due to severe erosion and incision of stream valleys, the surface slope angle rapidly increased, and toe resistance decreased. This combination of causes led to the development of a deep-seated primary landslide. As a result of an accumulation of younger deposits, regional uplift and further local erosion, stability of parts of the region decreased and led to landslide activity of a second stage. Reactivated and locally accelerating creep movements occur today and may forewarn of a stage of reactivated, hazardous rapid sliding, such as occurred with the adjacent and analogous Maseguchi landslide in 1947.  相似文献   


17.
This paper presents an advanced 3D numerical methodology to reproduce the kinematics of slow active landslides, more precisely, to reproduce the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. For this purpose, finite element analyses are performed in a large area covering a long time-span (12 years), in order to exhibit different interacting slope movements. First, we perform a stability analysis using the shear strength reduction (SSR) technique with a Mohr-Coulomb failure criteria. It is done in order to compute factors of safety (FS) and to identify two different scenarios, the first one being stable (FS > 1) and the second one being unstable (FS < 1). In the studied test case, the Portalet landslide (Central Spanish Pyrenees), the first scenario corresponds to an initial stable configuration of the slope and the second one to an unstable excavated configuration. Second, taking the first scenario as an initial condition, a time-dependent analysis is performed using a coupled formulation to model solid skeleton and pore fluids interaction, and a simplified ground water model that takes into account daily rainfall intensity. In this case, a viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behavior and the delayed creep deformation due to the excavation. The fluidity parameter is calibrated to reproduce displacements measured by the monitoring systems. Our results demonstrate that 3D analyses are preferable to 2D ones for reproducing in a more realistic way the slide behavior. After calibration, the proposed model is able to simulate successfully short- and medium-term predictions during stages of primary and secondary creep.  相似文献   

18.
The active Ruinon rockslide is located on the left bank of the Frodolfo River valley (Valfurva, Italian Alps) and is developed on the Confinale deep-seated gravitational slope deformation. Ruinon landslide is a major hazard for valley inhabitants in that rapid movement might dam the stream and create a debris flow. The landslide is strongly controlled by preexisting structural features and is believed to have been triggered by postglacial debuttressing. Ground-based radar interferometry has been used to map surface deformation over time of the entire unstable zone of Ruinon landslide with high spatial resolution and at a very high temporal acquisition rate (about five images per hour). The activity of the landslide shows strong periodicity, with summer and autumn accelerations and winter deceleration. From a correlation between the landslide acceleration and a class of rainfall event, we deduce the specific rainfall conditions that accelerate the instability of the landslide area. The study results suggest an improved tool for early warning of events of potentially catastrophic landslide instability.  相似文献   

19.
The Argentina National Road 7 that crosses the Andes Cordillera within the Mendoza province to connect Santiago de Chile and Buenos Aires is particularly affected by natural hazards requiring risk management. Integrated in a research plan that intends to produce landslide susceptibility maps, we aimed in this study to detect large slope movements by applying a satellite radar interferometric analysis using Envisat data, acquired between 2005 and 2010. We were finally able to identify two large slope deformations in sandstone and clay deposits along gentle shores of the Potrerillos dam reservoir, with cumulated displacements higher than 25 mm in 5 years and towards the reservoir. There is also a body of evidences that these large slope deformations are actually influenced by the seasonal reservoir level variations. This study shows that very detailed information, such as surface displacements and above all water level variation, can be extracted from spaceborne remote sensing techniques; nevertheless, the limitations of InSAR for the present dataset are discussed here. Such analysis can then lead to further field investigations to understand more precisely the destabilising processes acting on these slope deformations.  相似文献   

20.
Zhao  Bo  Yuan  Lei  Geng  Xueyu  Su  Lijun  Qian  Jiangpeng  Wu  Huanheng  Liu  Mao  Li  Jia 《Landslides》2022,19(5):1131-1141

With the rapid urbanization, an increasing number of landslides have been induced by human activities. In this study, a typical human-induced landslide known as the Maobazi landslide, which was triggered by foundation pit excavation in Sichuan Province, China, was analyzed. An emergency investigation was carried out to detect the basic deformation characteristics, followed by implementations of multiple monitoring schemes and emergency control measures to monitor and control reactivated deposits. The reactivated deposits depicted rapid deformations with a maximum deformation exceeding 140 mm from July to September before the emergency control measures were completed. The reactivated deposits gradually settled and were finally controlled in 2019. The results showed that the 2019 Maobazi landslide was a large; reactivated landslide with a scale reached to 520 Mm3, which could result in catastrophic consequences if it slipped down to nearby residential areas.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号