首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Eastern Mediterranean region has been exposed to drought episodes, which have been occurring more frequently during the last decades. The objective of the present paper is to study the precipitation regime of the Damascus (Mazzeh) meteoric station by analysing drought characteristics using the Standardized Precipitation Index (SPI) and comparing this with the drought in Cyprus. The cumulative drought conceptis proposed to characterize long-term hydrologic drought, which affects the shallow groundwater productivity in terms of quantity and quality. Gamma probability distribution was fitted to the long-term annual precipitation in Damascus from 1918–1919 to 2007–2008 (n = 90 years). Generally, a decreasing trend of 17% to the mean annual rainfall of Damascus and 13% to the mean annual rainfall of Cyprus was estimated between 1970 and 2000. The SPI identifies three major extended drought periods: (1) 9 years of severe drought (1954–1963) with an average 20% precipitation deficit per year compared to the mean. (2) 8 years of severe drought (1983–1991) with a 27% deficit per year on average. (3) 9 years of extreme drought (1993–2002) with a 31% deficit per year on average. The cumulative standardized precipitation index (SPI 30) demonstrates positive values for the first period and is indicative of having no effect on the global water balance. SPI 30 exhibits sensitive equilibrium with near zero values / a near zero value (±1.5) for the second period. For the third period, however, the SPI 30 decreases below ?10 indicating an extreme hydrological drought that has negative consequences on the recent groundwater recharge. It is required to develop and implement a sustainable groundwater management strategy to reduce long-terms drought risks. Generally, the SPI 30 in Cyprus is parallel to that in Damascus with a 3–5 year delay. Thus, the central zone of the Eastern Mediterranean region is facing big challenges and has been suffering from three decades of moderate to severe hydrological drought (SPI 30=?5 to ?10) causing a severe decrease in springs discharges of the region. Therefore, in order to reduce the climate change effects on water resources, it is necessary to adopt a sustainable proactive management plan during the frequent severe droughts.  相似文献   

2.
Characteristics of meteorological drought in Bangladesh   总被引:3,自引:3,他引:0  
Meteorological drought events occur in Bangladesh are diagnosed using monthly rainfall and mean air temperature from the surface observations and Regional Climate Model (RegCM) by calculating Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) for the period 1961?C1990. The historical records of drought event obtained from the Bangladesh Bureau of Statistics and International Disaster Database are used to verify the SPI and PDSI detected events. The SPI and monthly PDSI are obtained for 27 station data across Bangladesh as well as for two subregions over the country. Result based on the observed data shows that regional information is better in drought diagnosis compared to the point information. The regional analysis is able to detect about 80?% of the drought events occurred during the study period. Frequency of moderate drought is higher for all over the country. The SPI calculated from RegCM rainfall shows that the detection of moderate drought events is 10, 7, and 21?% overestimated for 1-, 3-, and 6-month length, respectively, compared to using of observed data. For extreme drought cases, detection is overestimated (underestimated) by 25?% (79?%) for 1-month (6-month) length. The PDSI results for model and observed data are nearly same to SPI calculations. Model monthly PDSI result is overestimated (underestimated) by 29?% (50?%) for moderate (severe) drought events with reference to the observed PDSI. Hence, RegCM output may be useful to detect 3?C6-month (monthly to seasonal) length moderate drought events over a heavy rainfall region likely Bangladesh.  相似文献   

3.
This article assesses drought status in the Yarmouk Basin (YB), in northern Jordan, using the Standardized Precipitation Index (SPI), the Standardized Water-Level Index (SWI), and the Percent Departure from Normal rainfall (PDNimd) during the years 1993–2014. The results showed that the YB suffers from frequent and irregular periods of drought as variations in drought intensity and frequency have been observed. The SPI results revealed that the highest drought magnitude of ??2.34 appeared at Nuaimeh rainfall station in 1991. This station has also experienced severe drought particularly in years 1995, 1999, 2005, and 2012 with SPI values ranging from ??1.51 to ??1.59. Some other rainfall stations such as Baqura, Ibbin, Khanasiri, Kharja, Mafraq police, Ramtha, Turra, and Umm Qais have also suffered several periods of drought mostly in 1993. The SWI results show the highest extreme drought events in 2001 in Souf well while other extreme drought periods were observed at Wadi Elyabis well in 1994 and at Mafraq well in 1995. As compared to SPI maps, our SWI maps reflect severe and extreme drought events in most years, negatively impacting the groundwater levels in the study area.  相似文献   

4.
In the present study, the Standardized precipitation index (SPI) was employed to analyze the drought status of the Dapoling basin over a period of autumn from September to November, because drought events frequently occur during this period. Three time scales were used, 3-, 6- and 12-month time scale. Daily precipitation data from 13 weather stations covering a period of 31 years from 1980 to 2010 were collected, and the Tyson polygon method was used to calculate the monthly precipitation of the basin. Based on the SPI value, the classification of drought was provided. Besides, considering the fact that the length of sample used to calculate the SPI influences the accuracy on SPI estimation, in turn to lead to the uncertainty of drought classification, the bootstrap technique was employed to analyze the uncertainty of SPI estimation and drought assessment. Results showed that, for September, October or November, drought event mainly occurred in 1985, 1986, 1988, 1990, 1992, 1993, 1994, 1997, 1999, 2001, 2002 and 2007. Especially in 1999 and 2001, severe drought and extreme drought occurred. And the uncertainty analysis results indicated that in term of expected estimation, the two methods with consideration and no-consideration of impact of sample on SPI calculation has no considerable difference, while in term of confidence interval estimation of SPI, there are obviously different between the two methods. This means the impact of the sampling uncertainty on SPI calculation and drought assessment should be noted and not ignored.  相似文献   

5.
Zhu  Bangyan  Chu  Zhengwei  Shen  Fei  Tang  Wei  Wang  Bin  Wang  Xiao 《Natural Hazards》2019,99(1):379-389

Droughts are hindrances to economic and social developments in many parts of the world, especially in developing nations like Kenya. In North Eastern Kenya (NEK), drought is very prevalent. The communities in the region are mainly dependent on animal farming, and drought occurrence leads to great socioeconomic setback. Drought indices used in most studies consider rainfall as the only parameter for assessing drought occurrences. This study analyzes drought in NEK using the Standardized Precipitation Index (SPI) and the Combined Drought Index (CDI) using rainfall and temperature values and Normalized Difference Vegetation Index values for the period 1980–2010. The results of the two indices show significant correlation. However, CDI is preferred in the analysis of the drought compared to the SPI as it gives drought in more detail, showing extreme, severe, moderate and mild. The study recommends the use of the two methods independently since they give similar results and further recommends trial in other parts of the country affected by drought.

  相似文献   

6.
Regional drought frequency analysis was carried out in the Poyang Lake basin (PLB) from 1960–2014 based on three standardized drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI) and the standardized Palmer drought index (SPDI). Drought events and characteristics were extracted. A Gumbel–Hougaard (GH) copula was selected to construct the bivariate probability distribution of drought duration and severity, and the joint return periods (T a ) were calculated. Results showed that there were 50 (50 and 40) drought events in the past 55 years based on the SPI (SPEI and SPDI), and 9 (8 and 10) of them were severe with T a more than 10 years, occurred in the 1960s, the 1970s and the 2000s. Overall, the three drought indices could detect the onset of droughts and performed similarly with regard to drought identification. However, for the SPDI, moisture scarcity was less frequent, but it showed more severe droughts with substantially higher severity and longer duration droughts. The conditional return period (Ts|d) was calculated for the spring drought in 2011, and it was 66a and 54a, respectively, based on the SPI and SPDI, which was consistent with the record. Overall, the SPI, only considering the precipitation, can as effectively as the SPEI and SPDI identify the drought process over the PLB under the present changing climate. However, drought is affected by climate and land-cover changes; thus, it is necessary to integrate the results of drought frequency analysis based on different drought indices to improve the drought risk management.  相似文献   

7.
This article investigates whether the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global terrestrial Drought Severity Index (DSI) had the capability of detecting regional drought over subtropical southwestern China. Monthly, remotely sensed DSI data with 0.05° spatial resolution were used to characterize the extent, duration, and severity of drought from 2000 to 2010. We reported that southwestern China suffered from incipient to extreme droughts from November 2009 to March 2010 (referred to as the “drought period”). The area affected by drought occupied approximately 74 % of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20, 12.7, and 13.2 % of the total area, respectively; particularly in March 2010, droughts of severe and extreme intensity covered the largest areas of drought, which were 16.1 and 18.6 %, respectively. Spatially, eastern Yunnan, western Guizhou, and Guangxi suffered from persistent droughts whose intensities ranged from mild to extreme during the drought period. Pearson’s correlation analyses were performed between DSI and the in situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results of the DSI. The results showed that the DSI corresponded favorably with the time scales of the SPI; meanwhile, the DSI showed its highest correlation (mean: r = 0.58) with a three-month SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the three-month SPI, as well as the agro-meteorological drought observation data, when monitoring drought. Our analysis suggests that the DSI can be used for near-real-time drought monitoring with fine resolution across subtropical southwestern China, or other similar regions, based solely on MODIS-derived evapotranspiration/potential evapotranspiration and Normalized Difference Vegetation Index data.  相似文献   

8.
He  Jun  Yang  Xiao-Hua  Li  Jian-Qiang  Jin  Ju-Liang  Wei  Yi-Ming  Chen  Xiao-Juan 《Natural Hazards》2014,75(2):199-217

Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.

  相似文献   

9.
Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.  相似文献   

10.
Meteorological drought during the southwest monsoon season and for the northeast monsoon season over five meteorological subdivisions of India for the period 1901–2015 has been examined using district and all India standardized precipitation index (SPI). Whenever all India southwest monsoon rainfall was less than ?10% or below normal, for those years all India SPI was found as ?1 or less. Composite analysis of SPI for the below normal years, viz., less than ?15% and ?20% of normal rainfall years indicate that during those years more than 30% of country’s area was under drought condition, whenever all India southwest monsoon rainfall was –15% or less than normal. Trend analysis of monthly SPI for the monsoon months identified the districts experiencing significant increase in drought occurrences. Significant positive correlation has been found with the meteorological drought over most of the districts of central, northern and peninsular India, while negative correlation was seen over the districts of eastern India with NINO 3.4 SST. For the first time, meteorological drought analysis over districts and its association with equatorial pacific SST and probability analysis has been done for the northeast monsoon over the affected regions of south peninsular India. Temporal correlation of all India southwest monsoon SPI and south peninsular India northeast monsoon SPI has been done with the global SST to identify the teleconnection of drought in India with global parameters.  相似文献   

11.
Drought identification and drought severity characterization are crucial to understand water scarcity processes. Evolution of drought and wetness episodes in the upper Nen River (UNR) basin have been analyzed for the period of 1951–2012 using meteorological drought indices and for the period of 1898–2010 using hydrological drought indices. There were three meteorological indices: one based on precipitation [the Standardized Precipitation Index (SPI)] and the other two based on water balance with different formulations of potential evapotranspiration (PET) in the Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, two hydrological indices, the Standardized Runoff Index and Standardized Streamflow Index, were also applied in the UNR basin. Based on the meteorological indices, the results showed that the main dry period of 1965–1980 and wet periods of 1951–1964 and 1981–2002 affected this cold region. It was also found that most areas of the UNR basin experienced near normal condition during the period of 1951–2012. As a whole, the UNR basin mainly had the drought episodes in the decades of 1910, 1920, 1970 and 2000 based on hydrological indices. Also, the severity of droughts decreased from the periods of 1898–1950 to 1951–2010, while the severity of floods increased oppositely during the same periods. A correlation analysis showed that hydrological system needs a time lag of one or more months to respond to meteorological conditions in this cold region. It was also found that although precipitation had a major role in explaining temporal variability of drought, the influence of PET was not negligible. However, the sole temperature driver of PET had an opposite effect in the UNR basin (i.e., misestimating the drought detection) and was inferior to the SPI, which suggests that the PET in the SPEI should be determined by using underlying physical principles. This finding is an important implication for the drought research in future.  相似文献   

12.
Onuşluel Gül  Gülay  Gül  Ali  Najar  Mohamed 《Natural Hazards》2022,110(2):1389-1404

In the context of major outcomes of a steadily changing climate, extreme climatic conditions and the associated events in various forms of weather-related natural disasters, e.g. droughts, floods, and heat waves, are more frequently experienced on the global scale in recent years. In support of this argument, there are adequate numbers of explicit signals over such a persistent outlook, which is greatly illustrated by historical data and observations. This study, which is mainly oriented to investigating the drought behaviour in Thracian, Aegean and Mediterranean transects of Turkey's major river basins, is actually inspired by the foreseen potential of using annual maximum drought severity series (based on drought definition through the standardized precipitation index (SPI)) within a framework that resembles the use of flood discharge directly from flow measurements in a river basin. To this end, a series of spatial analyses were employed to identify different aspects of flood appearance in the study extent, including trend views on annual average drought severity series, shifts in the starting time of the annually most severe flood periods, and changes in spatial coverage views of average drought conditions under different drought severity categories. The framework of the analytical approaches depends greatly on validated international datasets and open-source computational algorithms. The results from the analyses that were conducted in two consecutive periods of 1958–1980 and 1981–2004 revealed that Turkey's western and southern river basin systems seemed to have experienced quite different behaviours between the two periods in terms of drought severity magnitudes, drought durations and annual occurrence times.

  相似文献   

13.
淮河流域近500年洪旱事件演变特征分析   总被引:1,自引:0,他引:1  
为了认识淮河流域过去500年洪旱事件发生规律并鉴别当前的洪旱情势,收集并对比分析了流域实测降雨资料、重建历史雨季降雨资料、历史旱涝等级资料、历史洪旱文献记录和历史调查洪水资料等多源洪旱灾害数据。以重建历史雨季降雨资料和历史旱涝等级资料为主要依据,通过滑动平均、频率计算、小波分析和突变检验等方法,分析流域过去500年洪水干旱时空分布特征和演变规律。结果表明,17世纪淮河流域洪旱灾害最严重,但20世纪极端洪旱事件发生频次最多。淮河流域洪旱事件存在40年左右的稳定长周期,主周期从18世纪的15~20年逐渐减少到19世纪的5年周期,近20年来出现2~3年的主周期,洪旱灾害事件呈增加趋势,流域社会经济发展面临着严峻的洪旱灾害威胁。  相似文献   

14.
Based on the daily precipitation data of 38 weather stations in the Huai River Basin from 1961 to 2010, this study used SPI index, P-III curve to determine the flood/drought years, under what situations for droughts and floods easily happen, and to analyze the evolution law of flood and drought during inter-annual and intra-annual based on the characteristic of monthly precipitation. The results showed that: (1) annual rainfall of the Huai River Basin presented decreasing trend, maximum rainfall appeared from June to August, and multi-year average precipitation increased gradually from north to south; (2) the variation of monthly precipitation during flood years was more severe than other typical years, and precipitation in drought years showed nearly 50 % decline compared with normal years; (3) high rainfall of flood years was mainly caused by the increase in rainfall in flood season, and the strategy of flood control and drought relief was “short-term flood prevention and long-term drought relief”; (4) while precipitation of most months in drought year was reduced, the relevant strategies “annual basin-wide of long-term drought prevention” should be carried out; (5) combination events of floods and droughts occurred frequently. Persistent drought dominated in spring and summer while droughts and floods that happened alternately were mainly in summer and autumn.  相似文献   

15.
近300a来塔里木河流域旱涝灾害特征分析   总被引:3,自引:1,他引:2  
干旱与洪涝是极端水文事件中最具有代表性的水文事件,在气候变化的影响下旱涝灾害事件越来越引起人们的关注. 采用传统的气象干旱指标-标准化降水指数SPI和小波分析法、反距离加权法以及线性回归分析,研究了近300 a来塔里木河流域旱涝灾害分布特征及关键影响因素. 结果表明:近300 a来塔里木河流域旱涝灾害呈增加的趋势,且洪涝事件较干旱事件明显. 其中,喀什、阿克苏等地的发生频率最高,并表现为群发性;近60 a塔里木河流域自西向东旱涝灾害事件呈交替现象. 小波分析结果表明,塔里木河流域旱涝灾害呈现15 a的周期性,由此推断未来5~10 a研究区湿润化面积仍有扩大的可能. 大气环流指数与多尺度下的SPI指相关性检验表明,PNA对秋季和冬季的SPI值的影响较为显著;旱涝灾害对农牧业的影响较为严重,其中,洪涝灾害的影响大于干旱.  相似文献   

16.
Groundwater use in India, and many developing countries, is linked to livelihood and well-being of village communities. It is, therefore, important to characterise groundwater behaviour and resilience and identify strategies that will help to improve the sustainability of groundwater supplies. The concept of Standardised Precipitation Index (SPI) has been widely used for analysing rainfall drought. In this study, we adapt SPI to understand watertable fluctuations and assess resilience of groundwater supplies vis-à-vis rainfall variability from one year to the next. The modified SPI, called Groundwater Resilience Index (GRI), represents a normalized continuous watertable elevation variability function. The index is applied to two districts, viz., Udaipur and Aravalli in Rajasthan and Gujarat, India, respectively, to assess its usefulness. To evaluate the association of rainfall variability with groundwater depth fluctuation, SPI was also calculated. The study showed that GRI varies less than SPI, indicating that groundwater availability is less variable than the rainfall in both districts. This means that groundwater increases reliability of water supply for irrigation in both districts. The estimated SPI and GRI at 6-month intervals for the study period show that even though the groundwater is not stressed (normal condition in 75% of the months observed), there is variation in resilience of the aquifer system to drought and extreme events. Overall, the study indicated that the proposed GRI can be a useful tool for understanding watertable fluctuations and assessing groundwater resilience, especially to prioritise areas for groundwater recharge when funds for recharge works are limited.  相似文献   

17.
Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June–September or JJAS) from 2005–2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall.  相似文献   

18.
Similarly to other modes of transport, inland waterway transport has to deal with weather events, affecting navigation conditions and the infrastructure on inland waterways. Most significant extreme weather events result from high precipitation, droughts and temperatures below zero degrees Celsius. Heavy rainfall, in particular in association with snow melt, may lead to floods resulting in suspension of navigation and causing damage to the inland waterway infrastructure as well as the property and health of human beings living in areas exposed to flooding. Long periods of drought may lead to reduced discharge and low water levels, limiting the cargo-carrying capacity of vessels and increasing the specific costs of transportation. Temperatures below zero degrees Celsius over a longer period may cause the appearance of ice on waterways, leading to suspension of navigation and possible damage to infrastructure, for example, buoys. Neither extreme weather events as well as climate change are new phenomena nor is their general occurrence expected to change suddenly. However, due to climate change, extreme weather events may change positively or adversely in severity and frequency of occurrence, depending on the respective weather event and the location of its occurrence. This paper gives an overview of the impact of extreme weather events on inland waterway transport in Europe, focussed on the Rhine–Main–Danube corridor, followed by a discussion on how climate change will change these events and their impacts.  相似文献   

19.
《Comptes Rendus Geoscience》2008,340(9-10):621-628
Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21st century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research.  相似文献   

20.
Drought has become a recurrent phenomenon in Turkey in the last few decades. Significant drought conditions were observed during years of late 1980s and the trend continued in the late 1990s. The countrys agricultural sector and water resources have been under severe constraints from the recurrent droughts. In this study, spatial and temporal dimensions of meteorological droughts in Turkey have been investigated from vulnerability concept. The Standardized Precipitation Index (SPI) method was used to detail geographical variations in the drought vulnerability based on frequency and severity of drought events at multiple time steps. Critical (threshold) rainfall values were derived for each station at multiple-time steps in varying drought categories to determine least amount of rainfall required to avoid from drought initiation. The study found that drought vulnerability portrays a very diverse but consistent picture with varying time steps. At regional scale, south-eastern and eastern Anatolia are characterized with moderate droughts at shorter time steps, while the occurrence of severe droughts at shorter time steps is observed at non-coastal parts of the country. A similar picture was observed with very severe droughts. The critical (threshold) values exhibited rising numbers during the growing season at 3-month step in the South-eastern Anatolia, which might have significant consequences considering presence of large irrigation projects under-development in the region. In general, rainfall amounts required for non-drought conditions decrease from the coastal parts toward the interiors with increasing time steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号