首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events.  相似文献   

2.
Landslide inventories are the most important data source for landslide process, susceptibility, hazard, and risk analyses. The objective of this study was to identify an effective method for mapping a landslide inventory for a large study area (19,186 km2) from Light Detection and Ranging (LiDAR) digital terrain model (DTM) derivatives. This inventory should in particular be optimized for statistical susceptibility modeling of earth and debris slides. We compared the mapping of a representative set of landslide bodies with polygons (earth and debris slides, earth flows, complex landslides, and areas with slides) and a substantially complete set of earth and debris slide main scarps with points by visual interpretation of LiDAR DTM derivatives. The effectiveness of the two mapping methods was estimated by evaluating the requirements on an inventory used for statistical susceptibility modeling and their fulfillment by our mapped inventories. The resulting landslide inventories improved the knowledge on landslide events in the study area and outlined the heterogeneity of the study area with respect to landslide susceptibility. The obtained effectiveness estimate demonstrated that none of our mapped inventories are perfect for statistical landslide susceptibility modeling. However, opposed to mapping polygons, mapping earth and debris slides with a point in the main scarp were most effective for statistical susceptibility modeling within large study areas. Therefore, earth and debris slides were mapped with points in the main scarp in entire Lower Austria. The advantages, drawbacks, and effectiveness of landslide mapping on the basis of LiDAR DTM derivatives compared to other imagery and techniques were discussed.  相似文献   

3.
Statistical analyses of landslide deposits from similar areas provide information on dynamics and rheology, and are the basis for empirical relationships for the prediction of future events. In Central America landslides represent an important threat in both volcanic and non-volcanic areas. Data, mainly from 348 landslides in Nicaragua, and 19 in other Central American countries have been analyzed to describe landslide characteristics and to search for possible correlations and empirical relationships. The mobility of a landslide, expressed as the ratio between height of fall (H) and run-out distance (L) as a function of the volume and height of fall; and the relationship between the height of fall and run-out distance were studied for rock falls, slides, debris flows and debris avalanches. The data show differences in run-out distance and landslide mobility among different types of landslides and between debris flows in volcanic and non-volcanic areas. The new Central American data add to and seem consistent with data published from other regions. Studies combining field observations and empirical relationships with laboratory studies and numerical simulations will help in the development of more reliable empirical equations for the prediction of landslide run-out, with applications to hazard zonation and design of optimal risk mitigation measures.  相似文献   

4.
A model building strategy is tested to assess the susceptibility for extreme climatic events driven shallow landslides. In fact, extreme climatic inputs such as storms typically are very local phenomena in the Mediterranean areas, so that with the exception of recently stricken areas, the landslide inventories which are required to train any stochastic model are actually unavailable. A solution is here proposed, consisting in training a susceptibility model in a source catchment, which was implemented by applying the binary logistic regression technique, and exporting its predicting function (selected predictors regressed coefficients) in a target catchment to predict its landslide distribution. To test the method, we exploit the disaster that occurred in the Messina area (southern Italy) on 1 October 2009 where, following a 250-mm/8-h storm, approximately two thousand debris flow/debris avalanches landslides in an area of 21 km2 triggered, killing 37 people and injuring more than 100, and causing 0.5 M € worth of structural damage. The debris flows and debris avalanches phenomena involved the thin weathered mantle of the Varisican low to high-grade metamorphic rocks that outcrop in the eastern slopes of the Peloritani Mounts. Two 10-km2-wide stream catchments, which are located inside the storm core area, were exploited: susceptibility models trained in the Briga catchment were tested when exported to predict the landslides distribution in the Giampilieri catchment. The prediction performance (based on goodness of fit, prediction skill, accuracy and precision assessment) of the exported model was then compared with that of a model prepared in the Giampilieri catchment exploiting its landslide inventory. The results demonstrate that the landslide scenario observed in the Giampilieri catchment can be predicted with the same high performance without knowing its landslide distribution: we obtained, in fact, a very poor decrease in predictive performance when comparing the exported model to the native random partition-based model.  相似文献   

5.
Rapid debris flows are among the most destructive natural hazards in steep mountainous terrains. Prediction of their path and impact hinges on knowledge of initiation location and the size and constitution of the released mass. To better link mass release initiation with debris flow paths and runout lengths, we propose to capitalize on a newly developed model for rainfall-induced landslide initiation (“Catchment-scale Hydro-mechanical Landslide Triggering” CHLT model, von Ruette et al. 2013) and couple it with simple estimates of debris flow runout distances and pathways. Landslide locations and volumes provided by the CHLT model are used as inputs to simulate debris flow runout distances with two empirical- and two physically-based models. The debris flow runout models were calibrated using two landslide inventories in the Swiss Alps obtained following a large rainfall event in 2005. We first fitted and tested the models for the “Prättigau” inventory, where detailed information on runout path was available, and then applied the models to landslides inventoried from a different catchment (“Napf”). The predicted debris flow runout distances (emanating from CHLT simulated landslide positions) were well in the range of observed values for the physically-based approaches. The empirical approaches tend to overestimate runout distances relative to observations. These preliminary results demonstrate the added value of linking shallow landslide triggering models with predictions of debris flow runout pathways for a range of soil states and triggering events, thus providing a more complete hazard assessment picture for debris flow exposure at the catchment scale.  相似文献   

6.
Zhao  Hu  Kowalski  Julia 《Landslides》2022,19(8):2033-2045
Landslides - Landslide run-out modeling is a powerful model-based decision support tool for landslide hazard assessment and mitigation. Most landslide run-out models contain parameters that cannot...  相似文献   

7.
火后泥石流是火烧迹地最为严重的次生地质灾害,相对于传统泥石流和震后泥石流,其物源启动模式及致灾机理呈现出特殊性。通过对四川省乡城县仁额拥沟火烧迹地沟道不同时间尺度下的累积侵蚀量统计分析,将火烧迹地物源启动分为3个阶段:坡面侵蚀阶段、高含沙水流沟道侵蚀阶段和泥石流沟道刨蚀阶段,其中面蚀到沟蚀转变所需的汇流面积与斜坡倾斜度和火烈度呈负相关,高含沙水流转变为泥石流后常常造成沟道侵蚀率的激增;火烧后2 a的坡面侵蚀量相当于火烧前10~30 a的侵蚀总量,且主要发生在中度及严重火烧区;火烧区的滑坡发育率远高于未火烧区,但未发现火烈度对滑坡体积有明显影响,其主要受临空面高度影响,并呈幂函数正相关,滑坡物源启动模式为坡脚切坡触发的逐级牵引后退式补给。  相似文献   

8.
2017年8月8日九寨沟MS7.0地震诱发了数以千计的崩滑体,产生的大量松散固体碎屑在降雨作用下极易启动转化为新的滑坡或泥石流形成次生灾害,因此对九寨沟景区进行滑坡易发性评价尤为必要。基于震前、震后高精度遥感影像对比分析结合现场调查,共获取1047处滑坡,总面积为3.88 km2。在分析滑坡发育分布与影响因素关系的基础上,本文选取了构造因子、地形因子、地质因子及其他因子等9个指标,采用确定性系数(CF)模型、逻辑回归(Logistic)模型以及两种模型耦合分析进行滑坡易发性评价。研究结果表明,坡度、坡向、高程和地层岩性是影响滑坡分布的主要因子;研究区被划分为低易发区(60.72%)、中度易发区(24.18%)、高易发区(9.89%)和极高易发区(5.21%),高-极高易发区基本沿沟谷分布,面积为99 km2,其中熊猫海、老虎海周边均为滑坡极高易发区;采用耦合模型比单一模型评价结果更加合理,其结果可作为景区滑坡防治和分段分时开放的参考依据。  相似文献   

9.
Typhoon Morakot brought extreme rainfall and initiated numerous landslides and debris flows in southern Taiwan in August of 2009. The purpose of this study is to identify the extreme rainfall-induced landslide frequency-area distribution in the Laonong River Basin in southern Taiwan and debris flow-initiated conditions under rainfall. Results of the analysis show that debris flows were initiated under high cumulative rainfall and long rainfall duration or high rainfall intensity. The relationship of mean rainfall intensity and duration threshold could reflect debris flow initiation characteristics under high rainfall intensity in short rainfall duration conditions. The relationship of cumulative rainfall and duration threshold could reflect debris flow initiation characteristics under high cumulative rainfall in long rainfall duration. Defining rainfall events by estimating rainfall parameters with different methodologies could reveal variations among intermittent rainfall events for the benefit of issuing debris flow warnings. The exponent of landslide frequency-area distribution induced by Typhoon Morakot is lower than that induced by the Chi-Chi earthquake. The lower exponent of landslide frequency-area distribution can be attributed to the transportation and deposition areas of debris flow that are included in the landslide area. Climate change induced high rainfall intensity and long duration of precipitation, for example, Typhoon Morakot brought increased frequency of debris flow and created difficulty in issuing warnings from rainfall monitoring.  相似文献   

10.
人工降雨条件下冲沟型泥石流起动试验研究   总被引:1,自引:0,他引:1  
下垫面以位于贡嘎山东坡的熊家沟为模型,开展了不同降雨强度条件下冲沟型泥石流起动的模拟试验,初步研究了冲沟型泥石流的形成机理和演化特征.试验研究表明:(1)在强降雨条件下,水体入渗速度、不同深度土体含水量变化与降雨强度呈反比例关系,降雨强度越大,越不利于水体入渗,而有利于坡面汇流、冲沟径流和下切侵蚀; (2)在强降雨和径流条件下,土体破坏方式、破坏程度以及泥石流形成机理表现出差异性.相对较小雨强降雨条件下,土体破坏方式以滑坡为主,泥石流形成模式表现为滑坡液化与转化起动,雨强较大降雨条件下,土体破坏方式以侵蚀垮塌为主,泥石流形成模式为洪流席卷垮塌体和沟床揭底; (3)起动试验中泥石流阵性特征明显.在强降雨条件下,雨强与泥石流的规模、黏度之间没有正相关性,雨强越大,泥石流黏度越小,试验中多出现的是高含砂洪流,而相对较小雨强作用下由土体液化转化形成的泥石流黏度较大.试验现象和结果与熊家沟泥石流起动、发生过程具有较高的一致性.  相似文献   

11.
Quantitative landslide risk assessment requires information about the temporal, spatial and intensity probability of hazardous processes both regarding their initiation as well as their run-out. This is followed by an estimation of the physical consequences inflicted by the hazard, preferentially quantified in monetary values. For that purpose, deterministic hazard modelling has to be coupled with information about the value of the elements at risk and their vulnerability. Dynamic run-out models for debris flows are able to determine physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk can suffer an impact. These results can then be applied for vulnerability and risk calculations. Debris flow risk has been assessed in the area of Tresenda in the Valtellina Valley (Lombardy Region, northern Italy). Three quantitative hazard scenarios for different return periods were prepared using available rainfall and geotechnical data. The numerical model FLO-2D was applied for the simulation of the debris flow propagation. The modelled hazard scenarios were consequently overlaid with the elements at risk, represented as building footprints. The expected physical damage to the buildings was estimated using vulnerability functions based on flow depth and impact pressure. A qualitative correlation between physical vulnerability and human losses was also proposed. To assess the uncertainties inherent in the analysis, six risk curves were obtained based on the maximum, average and minimum values and direct economic losses to the buildings were estimated, in the range of 0.25–7.7 million €, depending on the hazard scenario and vulnerability curve used.  相似文献   

12.
四川都江堰三溪村710高位山体滑坡研究   总被引:2,自引:0,他引:2  
2013年7月10日上午10时,四川都江堰市中兴镇三溪村受极端暴雨影响发生高位山体滑坡灾害,滑坡-碎屑堆积体方量超过150104m3,其中1#滑坡-碎屑堆积体长度1.26km,造成三溪村一组重大人员伤亡。笔者在野外实地调查和室内研究分析的基础上,总结了都江堰三溪村滑坡的基本特征,研究了其启动运动机制和滑动速度,主要认识如下:(1)该滑坡为一处高位山体滑坡,后缘白垩系砂砾岩地层高速滑动后剧烈撞击-铲刮-偏转后铲动坡体上的松散堆积层而形成高位山体滑坡-碎屑流灾害。(2)根据滑坡的运动及堆积特征,将1#滑坡划分为砂砾岩滑动区、碰撞铲刮区和碎屑流堆积覆盖区3部分。(3)7月8日8时至10日8时,中兴镇三溪村的持续强降雨天气过程(都江堰市3d的降雨量相当于该地区年降雨总量的44.1%),直接触发了滑坡的发生。(4)三溪村滑坡的发生受2008年汶川地震、特殊的岩土体性质、地形地貌条件以及极端暴雨事件的综合影响,地震、地形为其发育提供了基础条件,极端暴雨事件为其直接诱发因素。(5)建议加强高位山体滑坡的研究,尤其是远程滑坡-碎屑流的早期识别和预警。  相似文献   

13.
In tropical areas, mass movements are common phenomena, especially during periods of heavy rainfall, which frequently take place in the summer season. These phenomena have caused loss of life and serious damage to infrastructure and properties. The most prominent of these phenomena are landslides that can produce debris flows. Thus, this article aims at determining affected areas using a model to predict landslide prone areas (SHALSTAB) combined with an empirical model designed to define the debris flow travel distance and area of deposition. The methodology of this work consists of the following steps: (a) elaboration of a digital elevation model (DEM), (b) application of the deterministic SHALSTAB model to locate the landslide prone areas, (c) identification of the debris flow travel distance and area of deposition, and (d) mapping of the affected areas (landslides and debris flows). This work was developed in an area in which many mass movements occurred after intense rainfall during the summer season (February 1996) in the state of Rio de Janeiro, southeast Brazil. All of the scars produced by that event were mapped, allowing for validation of the applied models. The model results show that the mapped landslide locations can adequately be simulated by the model.  相似文献   

14.
基于地理信息系统(ArcGIS100)平台和小流域单元,采用逻辑回归(LR)模型对金沙江上游(奔子栏—昌波河段)干热河谷区进行泥石流易发性评价,并对预测结果进行总体检验与随机个案检验。评价与检验结果表明,得到的最优指标组合下LR评价模型的AUC值为827%;预测的极高易发区、高易发区面积合占全区面积的3598%,实发泥石流面积占泥石流总面积的6503%;在个案检验中,位于各等级分区的检验组样本实发泥石流比例随着分区易发性等级降低,依次为917%(极高)、750%(高)、364%(中等)、167%(低)、0(极低),表明评价效果良好。研究区泥石流集中发育于金沙江沿岸的东北部、中部和西南部,主导性的评价指标依次为距主干道路距离、岩性、距断裂带距离、雨季月平均降雨量。人类活动与季节性降雨为研究区干热河谷泥石流的主要诱发条件。基于逻辑回归模型的泥石流易发性评价方法提高了泥石流发生可能性的预测精度,可为干热河谷区泥石流预测预警和防治提供参考依据。  相似文献   

15.
Yongbo Tie 《Natural Hazards》2013,65(3):1589-1601
Our aim is to determine the run-out distance of the debris flow that is crucial in the assessment, prevention and control of the debris flow hazard. Based on the variation characteristic of debris flow velocity in the alluvial fan, this paper proposes the calculation method of the velocity attenuation coefficient of the debris flow. By defining the velocity attenuation coefficient and deducing its calculating formula, this paper puts forward a new method to determine the run-out distance of the debris flow based on the velocity attenuation coefficient, and Gangou debris flow in Luding County, Sichuan Province is selected as a case for calculation and verification. Having 10 m as its measuring spacing, this paper measured 19 sections at the alluvial fan of the Gangou debris flow (among them, 11 sets of data are valid). And based on the measurement, this paper analyzes the characteristic of the velocity attenuation and calculates its velocity attenuation coefficient after the 2005 debris flow. The study indicates that when the velocity of Gangou debris flow at the alluvial fan is greater than 12 % of the initial velocity (at the mouth of gully), the attenuation is quite remarkable. But when the velocity at the alluvial fan is less than 12 % of the initial velocity, the attenuation is quite slow. Besides, when Gangou debris flow rushes out of the gully mouth (the initial velocity is 10 m/s) and when it attenuates to the 32 time, its velocity is less than 0.1 m/s, the debris flow is considered to stop flowing, and the run-out distance of Gangou debris flow is calculated to be 320 m. But the present alluvial fan of Gangou debris flow is measured to be 285 m in length, and the calculated run-out distance is 320 m, which is 35 m longer than its present length. This means when the debris flow runs out in 2005, it blocked up the main river (Dadu River) in some extent. And this finding is generally in accordance with that from the field survey. The findings can be of theoretical and practical significance in the debris flow hazard assessment, as well as its prevention and mitigation.  相似文献   

16.
中国学者在暴雨滑坡、泥石流预测预报研究领域取得的成果为采用数字滑坡技术进行暴雨滑坡、泥石流预警、监测模型研究提供了宝贵的基础,应用数字滑坡技术建立暴雨滑坡、泥石流预测模型的原则是:(1)必须在滑坡、泥石流形成条件理论指导下;(2)应了解研究区地质环境及滑坡、泥石流特征;(3)就基于数字滑坡技术而言,只能选取遥感方法可能...  相似文献   

17.
A dramatic increase in debris flows occurred in the years after the 2008 Wenchuan earthquake in SW China due to the deposition of loose co-seismic landslide material. This paper proposes a preliminary integrated model, which describes the relationship between rain input and debris flow run-out in order to establish critical rain thresholds for mobilizing enough debris volume to reach the basin outlet. The model integrates in a simple way rainfall, surface runoff, and concentrated erosion of the loose material deposited in channels, propagation, and deposition of flow material. The model could be calibrated on total volumes of debris flow materials deposited at the outlet of the Shuida catchment during two successive rain events which occurred in August 2011. The calibrated model was used to construct critical rainfall intensity-duration graphs defining thresholds for a run-out distance until the outlet of the catchment. Model simulations show that threshold values increase after successive rain events due to a decrease in erodible material. The constructed rainfall intensity-duration threshold graphs for the Shuida catchment based on the current situation appeared to have basically the same exponential value as a threshold graph for debris flow occurrences, constructed for the Wenjia catchment on the basis of 5 observed triggering rain events. This may indicate that the triggering mechanism by intensive run-off erosion in channels in this catchment is the same. The model did not account for a supply of extra loose material by landslips transforming into debris flow or reaching the channels for transportation by run-off. In August 2012, two severe rain events were measured in the Shuida catchment, which did not produce debris flows. This could be confirmed by the threshold diagram constructed by the model.  相似文献   

18.
四川茂县新磨村高位滑坡铲刮作用分析   总被引:1,自引:1,他引:0       下载免费PDF全文
2017年6月24日,四川省茂县叠溪镇新磨村发生高位顺层山体滑坡,滑动高差达1 160 m,滑动平距约2 200 m。该滑坡的滑动方量巨大,与其滑动过程中产生的铲刮效应有关。为分析其铲刮效应,文章通过现场调查、遥感影像解译和无人机航拍图像,确定该滑坡的滑动全过程为:多次历史地震造成滑坡源区岩体结构破碎,降雨沿顶部裂隙入渗导致水压力增大及石英砂岩中的薄层板岩软化,在长期疲劳效应下斜坡上部岩体最终发生滑动;上部滑体在运移过程中,对斜坡中部浅表风化层、部分基岩及下部老滑坡堆积体进行铲刮并重新堆积。采用Rockfall软件模拟源区滑体的运动路径、速度与能量,结果表明:在碎屑流区和老滑坡堆积区都存在明显的集中铲刮作用,整个滑坡的高危险区也主要位于该区域,所以危险性分区可代表不同滑坡区域的铲刮程度。计算得两个区域的铲刮方量分别为4.9×106,4.38×106 m3,滑坡总方量为13.35×106 m3。该模拟和计算方法迅速有效,可为以后类似滑坡的应急、救灾和铲刮方量计算提供参考。  相似文献   

19.
The Zymoetz River landslide is a recent example of an extremely mobile type of landslide known as a rock slide–debris flow. It began as a failure of 900,000 m3 of bedrock, which mobilized an additional 500,000 m3 of surficial material in its path, transforming into a large debris flow that traveled over 4 km from its source. Seasonal snow and meltwater in the proximal part of the path were important factors. A recently developed dynamic model that accounts for material entrainment, DAN3D, was used to back-analyze this event. The two distinct phases of motion were modeled using different basal rheologies: a frictional model in the proximal path and a Voellmy model in the distal path, following the initiation of significant entrainment. Very good agreement between the observed and simulated results was achieved, suggesting that entrainment capabilities are essential for the successful simulation of this type of landslide.  相似文献   

20.
浅层滑坡型火后泥石流起动机理研究进展与案例分析   总被引:1,自引:0,他引:1  
火后泥石流由起动条件的不同可以分为表面径流型火后泥石流和浅层滑坡型火后泥石流。由于表面径流型火后泥石流多发生于火灾后的前两年,水土流失严重,灾害效应明显,因此,大多数研究集中在表面径流型火后泥石流。然而,对于火灾较长时间后发生的浅层滑坡型火后泥石流,现有研究相对较少,这制约了人们对于浅层滑坡型火后泥石流起动条件和起动机理的认知。与表面径流型火后泥石流相比,浅层滑坡型火后泥石流的形成主要是由于根-土强度的退化导致。因此,定量测定火灾后根和土强度的衰减,是了解浅层滑坡型火后泥石流机理的必要条件。本文以四川省凉山州木里县的火后浅层滑坡为研究对象,针对未火烧、火烧后3年及火烧后9年的马尾松进行根系数量统计、根系极限抗拉力测试、根土复合体抗剪强度测试及对不同火烧后时间的坡体进行稳定性分析。结果表明,火后根系数量、极限抗拉力随火后时间而递减。由于火灾造成植被死亡根系腐烂,土中产生大孔隙,使得根土复合体抗剪强度下降,进而造成降雨条件下的浅层滑坡的起动。研究成果解释了火灾后数年内浅层滑坡-泥石流的起动机理,为滑坡型火后泥石流防灾减灾提供了数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号