首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform a numerical simulation of magnetohydrodynamics (MHD) radially self-similar jets, whose prototype is the Blandford & Payne analytical example. The final steady state that is reached is valid close to the rotation axis and also at large distances above the disc where the classical analytical model fails to provide physically acceptable solutions. The outflow starts with a subslow magnetosonic speed, which subsequently crosses all relevant MHD critical points and corresponding magnetosonic separatrix surfaces. The characteristics are plotted together with the Mach cones and the superfast magnetosonic outflow satisfies MHD causality. The final solution remains close enough to the analytical one, which is thus shown to be topologically stable and robust for various boundary conditions.  相似文献   

2.
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+, CS and H2CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+, as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model.  相似文献   

3.
The evolution of star-forming core analogues undergoing inside-out collapse is studied with a multipoint chemodynamical model which self-consistently computes the abundance distribution of chemical species in the core. For several collapse periods the output chemistry of infalling tracer species such as HCO+, CS and N2H+ is then coupled to an accelerated Λ-iteration radiative transfer code, which predicts the emerging molecular line profiles using two different input gas/dust temperature distributions. We investigate the sensitivity of the predicted spectral line profiles and line asymmetry ratios to the core temperature distribution, the time-dependent model chemistry, as well as to ad hoc abundance distributions. The line asymmetry is found to be strongly dependent on the adopted chemical abundance distribution. In general, models with a warm central region show higher values of blue asymmetry in optically thick HCO+ and CS lines than models with a starless core temperature profile. We find that in the formal context of Shu-type inside-out infall, and in the absence of rotation or outflows, the relative blue asymmetry of certain HCO+ and CS transitions is a function of time and, subject to the foregoing caveats, can act as a collapse chronometer. The sensitivity of simulated HCO+ line profiles to linear radial variations, subsonic or supersonic, of the internal turbulence field is investigated in the separate case of static cores.  相似文献   

4.
For the case in which the gas of a magnetized filamentary cloud obeys a polytropic equation of state, gravitational collapse of the cloud is studied using a simplified model. We concentrate on the radial distribution and restrict ourselves to a purely toroidal magnetic field. If the axial motions and poloidal magnetic fields are sufficiently weak, we could reasonably expect our solutions to be a good approximation. We show that while the filament experiences gravitational condensation and the density at the centre increases, the toroidal flux-to-mass ratio remains constant. A series of spatial profiles of density, velocity and magnetic field for several values of the toroidal flux-to-mass ratio and the polytropic index, is obtained numerically and discussed.  相似文献   

5.
We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.  相似文献   

6.
CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions, and sometimes more than one component contributes to the observed line profile. In this study, we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, 12CO   J = 2 → 1, 13CO J = 2 → 1  , C18O   J = 2 → 1  and C17O   J = 2 → 1  from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate James Clerk Maxwell Telescope (JCMT) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of 12CO and 13CO have a large linewidth due to a high-velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. C18O and C17O do not display such a large linewidth as they trace denser quiescent material deep in the cloud.  相似文献   

7.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

8.
We discuss the influence of the cosmological background density field on the spherical infall model. The spherical infall model has been used in the PressSchechter formalism to evaluate the number abundance of clusters of galaxies, as well as to determine the density parameter of the Universe from the infalling flow. Therefore, the understanding of collapse dynamics plays a key role for extracting cosmological information. Here, we consider a modified version of the spherical infall model. We derive the mean field equations from the Newtonian fluid equations, in which the influence of cosmological background inhomogeneity is incorporated into the averaged quantities as the backreaction . By calculating the averaged quantities explicitly, we obtain simple expressions and find that, in the case of a scale-free power spectrum, density fluctuations with a negative spectral index make the infalling velocities slow. This suggests that we underestimate the density parameter when using the simple spherical infall model. In cases with the index n >0, the effect of background inhomogeneity could be negligible and the spherical infall model becomes a good approximation for infalling flows. We also present a realistic example with a cold dark matter power spectrum. In this case, the mean infall tends to be slow owing to the anisotropic random velocity.  相似文献   

9.
Using numerical techniques we study the global stability of cooling flows in X-ray luminous giant elliptical galaxies. As an unperturbed equilibrium state we choose the hydrostatic gas recycling model. Non-equilibrium radiative cooling, stellar mass loss, heating by type Ia supernovae, distributed mass deposition and thermal conductivity are included. Although the recycling model reproduces the basic X-ray observables, it appears to be unstable with respect to the development of inflow or outflow. In spherical symmetry the inflows are subject to a central cooling catastrophe, while the outflows saturate in a form of a subsonic galactic wind. Two-dimensional axisymmetric random velocity perturbations of the equilibrium model trigger the onset of a cooling catastrophe, which develops in an essentially non-spherical way. The simulations show a patchy pattern of mass deposition and the formation of hollow gas jets, which penetrate through the outflow down to the galaxy core. The X-ray observables of such a hybrid gas flow mimic those of the equilibrium recycling model, but the gas temperature exhibits a central depression. The mass deposition rate M ˙ consists of two contributions of similar size: (i) a hydrostatic one resembling that of the equilibrium model, and (ii) a dynamical one which is related to the jets and is more concentrated towards the centre. For a model galaxy, like NGC 4472, our 2D simulations predict M ˙ ≈ 2 M⊙ yr−1 within the cooling radius for the advanced non-linear stage of the instability. We discuss the implications of these results to Hα nebulae and star formation in cooling flow galaxies and emphasize the need for high-resolution 3D simulations.  相似文献   

10.
We present the first C-shock and radiative transfer model that calculates the evolution of the line profiles of neutral and ion species like SiO, H13CO+ and HN13C for different flow times along the propagation of the shock through the unperturbed gas. We find that the line profiles of SiO characteristic of the magnetic precursor stage have very narrow linewidths and are centered at velocities close to the ambient cloud velocity, as observed toward the young shocks in the L1448-mm outflow. Consistently with previous works, our model also reproduces the broad SiO emission detected in the high velocity gas in this outflow, for the downstream postshock gas in the shock. This implies that the different velocity components observed in L1448-mm are due to the coexistence of different shocks at different evolutionary stages.  相似文献   

11.
We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around 107 K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the protodisc material and may assist in the formation of a quasi-steady disc. Thus, the centrifugal breakout found in numerical simulations for uniformly rotating stars does not imply that quasi-steady discs with slow outflow cannot form around magnetic rotator stars with solar-type differential rotation.  相似文献   

12.
If the observed relativistic plasma outflows in astrophysical jets are magnetically collimated and a single-component model is adopted, consisting of a wind-type outflow from a central object, then a problem arises with the inefficiency of magnetic self-collimation to collimate a sizeable portion of the mass and magnetic fluxes in the relativistic outflow from the central object. To solve this dilemma, we have applied the mechanism of magnetic collimation to a two-component model consisting of a relativistic wind-type outflow from a central source and a non-relativistic wind from a surrounding disc. By employing a numerical code for a direct numerical solution of the steady-state problem in the zone of super-fast magnetized flow, which allows us to perform a determination of the flow with shocks, it is shown that in this two-component model it is possible to collimate into cylindrical jets all the mass and magnetic fluxes that are available from the central source. In addition, it is shown that the collimation of the plasma in this system is usually accompanied by the formation of oblique shock fronts. The non-relativistic disc-wind not only plays the role of the jet collimator, but it also induces the formation of shocks as it collides with the initially radial inner relativistic wind and also as the outflow is reflected by the system axis. Another interesting feature of this process of magnetic collimation is a sequence of damped oscillations in the width of the jet.  相似文献   

13.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

14.
We describe similarity solutions that characterize the collapse of collisional gas on to scale-free perturbations in an Einstein–de Sitter universe. We consider the effects of radiative cooling and derive self-similar solutions under the assumption that the cooling function is a power law of density and temperature, Λ( T , ρ )∝ ρ 3/2 T . We use these results to test the ability of smooth particle hydrodynamics (SPH) techniques to follow the collapse and accretion of shocked, rapidly cooling gas in a cosmological context. Our SPH code reproduces the analytical results very well in cases that include or exclude radiative cooling. No substantial deviations from the predicted central mass accretion rates or from the temperature, density and velocity profiles are observed in well-resolved regions inside the shock radius. This test problem lends support to the reliability of SPH techniques to model the complex process of galaxy formation.  相似文献   

15.
A new self-similar solution describing the dynamical condensation of a radiative gas is investigated under a plane-parallel geometry. The dynamical condensation is caused by thermal instability. The solution is applicable to generic flow with a net cooling rate per unit volume and time  ∝ρ2 T α  , where  ρ,  T   and α are the density, temperature and a free parameter, respectively. Given α, a family of self-similar solutions with one parameter η is found in which the central density and pressure evolve as follows:  ρ( x = 0, t ) ∝ ( t c− t )−η/(2−α)  and   P ( x = 0, t ) ∝ ( t c− t )(1−η)/(1−α)  , where t c is the epoch at which the central density becomes infinite. For  η∼ 0  the solution describes the isochoric mode, whereas for  η∼ 1  the solution describes the isobaric mode. The self-similar solutions exist in the range between the two limits; that is, for  0 < η < 1  . No self-similar solution is found for  α > 1  . We compare the obtained self-similar solutions with the results of one-dimensional hydrodynamical simulations. In a converging flow, the results of the numerical simulations agree well with the self-similar solutions in the high-density limit. Our self-similar solutions are applicable to the formation of interstellar clouds (H  i clouds and molecular clouds) by thermal instability.  相似文献   

16.
In broad astrophysical contexts of large-scale gravitational collapses and outflows and as a basis for various further astrophysical applications, we formulate and investigate a theoretical problem of self-similar magnetohydrodynamics (MHD) for a non-rotating polytropic gas of quasi-spherical symmetry permeated by a completely random magnetic field. Within this framework, we derive two coupled nonlinear MHD ordinary differential equations (ODEs), examine properties of the magnetosonic critical curve, obtain various asymptotic and global semi-complete similarity MHD solutions, and qualify the applicability of our results. Unique to a magnetized gas cloud, a novel asymptotic MHD solution for a collapsing core is established. Physically, the similarity MHD inflow towards the central dense core proceeds in characteristic manners before the gas material eventually encounters a strong radiating MHD shock upon impact onto the central compact object. Sufficiently far away from the central core region enshrouded by such an MHD shock, we derive regular asymptotic behaviours. We study asymptotic solution behaviours in the vicinity of the magnetosonic critical curve and determine smooth MHD eigensolutions across this curve. Numerically, we construct global semi-complete similarity MHD solutions that cross the magnetosonic critical curve zero, one, and two times. For comparison, counterpart solutions in the case of an isothermal unmagnetized and magnetized gas flows are demonstrated in the present MHD framework at nearly isothermal and weakly magnetized conditions. For a polytropic index γ=1.25 or a strong magnetic field, different solution behaviours emerge. With a strong magnetic field, there exist semi-complete similarity solutions crossing the magnetosonic critical curve only once, and the MHD counterpart of expansion-wave collapse solution disappears. Also in the polytropic case of γ=1.25, we no longer observe the trend in the speed-density phase diagram of finding infinitely many matches to establish global MHD solutions that cross the magnetosonic critical curve twice.   相似文献   

17.
We have undertaken echelle spectroscopy and narrow-band line imaging of the bipolar planetary nebula M 1-8. This has permitted us to map the outflow in [N  ii ]λλ 6548+6583 Å, Hα, and in the v = 1–0 S(1) transition of H2 at λ 2.122 μm. It has also permitted us to acquire high-resolution spectra for [N  ii ]λ 6583 Å, Hα and He  ii λ 6560 Å. Our observations support the results of a previous 2MASS analysis by two of the authors (J. P. Phillips and G. Ramos-Larios), and confirm that there is strong H2 emission outside of the ionized zone, as well as along the major axis of the outflow. Finally, we have investigated the spatial structure of the outflow in low and high excitation lines, and noted evidence for strong ionization stratification within the envelope of the source. We also note that major axis spectra show asymmetries attributable to outflow along the lobes, oriented at an angle i ∼ 35°–40° to the line of sight. Asymmetries along the minor axis, by contrast, appear to be associated with the central collimating disc, and may be interpretable in terms of asymmetries in disc structure, or rotation at an angular velocity of Ω∼ 1.4 10−12 rad s−1. If the disc arises due to common-envelope evolution, then it seems that angular momentum constraints must be relatively tight, and can only be satisfied given fairly extreme physical assumptions (such as low disc mass, high primary star mass, a low distance to the source and so forth).  相似文献   

18.
The magnetic fields affect collapse of molecular cloud cores. Here, we consider a collapsing core with an axial magnetic field and investigate its effect on infall of matter and formation of accretion disk. For this purpose, the equations of motion of ions and neutral infalling particles are numerically solved to obtain the streamlines of trajectories. The results show that in a non-steady state of ionization and ion–neutral coupling, which is not unexpected in the case of infall, the radius of accretion disk will be larger as a consequence of axial magnetic field.  相似文献   

19.
We investigate the linear theory of Kelvin–Helmholtz instability at the interface between a partially ionized dusty outflow and the ambient material analytically. We model the interaction as a multifluid system in a planar geometry. The unstable modes are independent from the charge polarity of the dust particles. Although our results show a stabilizing effect for charged dust particles, the growth time-scale of the growing modes gradually becomes independent of the mass or charge of the dust particles when the magnetic-field strength increases. We show that growth time-scale decreases with increasing the magnetic field. Also, as the mass of the dust particles increases, the growth time-scale of the unstable mode increases.  相似文献   

20.
We present a new analytical three-parameter formula to fit observed column density profiles of prestellar cores. It represents a line-of-sight integral through a spherically symmetric or disc-like isothermal cloud. The underlying model resembles the Bonnor–Ebert model in that it features a flat central region leading into a power-law decline  ∝ r −2  in density, and a well-defined outer radius. However, we do not assume that the cloud is in equilibrium, and can instead make qualitative statements about its dynamical state (expansion, equilibrium, collapse) using the size of the flat region as a proxy. Instead of having temperature as a fitting parameter, our model includes it as input, and thus avoids possible inconsistencies. It is significantly easier to fit to observational data than the Bonnor–Ebert sphere. We apply this model to L1689B and B68. We show that L1689B cannot be in equilibrium but instead appears to be collapsing, while our model verifies that B68 is not far from being a hydrostatic object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号