首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal Mechanism of the Koyna, India Earthquake of 1967, December 10   总被引:1,自引:0,他引:1  
One of the two alternate fault plane solutions determined in this study for the Koyna earthquake of 1967 December 10 shows a component of normal faulting. This possibility remained unnoticed in previous focal mechanism studies. Both solutions show left lateral motion along the nodal plane striking towards north-north-east. The origin of the tectonic stress causing the earthquake is believed to be related to the collision of Indian and Eurasian continents, following which the entire Indian Peninsula may be under a state of left lateral shear.  相似文献   

2.
We evaluate the stress field in and around the southern Korean Peninsula with focal mechanism solutions, using the data collected from 71 earthquakes ( ML = 1.9–5.2) between 1999 and 2004. For this, the hypocentres were relocated and well-constrained fault plane solutions were obtained from the data set of 1270 clear P -wave polarities and 46 SH / P amplitude ratios. The focal mechanism solutions indicate that the prevailing faulting types in South Korea are strike-slip-dominant-oblique-slip faultings with minor reverse-slip component. The maximum principal stresses (σ1) estimated from fault-slip inversion analysis of the focal mechanism solutions show a similar orientation with E–W trend (269°–275°) and low-angle plunge (10°–25°) for all tectonic provinces in South Korea, consistent with the E–W trending maximum horizontal stress (σHmax) of the Amurian microplate reported from in situ stress measurements and earthquake focal mechanisms. The directions of the intermediate (σ2) and minimum (σ3) principal stresses of the Gyeongsang Basin are, however, about 90 deg off from those of the other tectonic provinces on a common σ2–σ3 plane, suggesting a permutation of σ2 and σ3. Our results incorporated with those from the kinematic studies of the Quaternary faults imply that NNW- to NE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea.  相似文献   

3.
All conventional stress inversion methods, when applied to earthquake focal mechanism data, suffer from uncertainty as to which plane is the true fault plane. This paper deals with several problems in stress inversion brought about by this uncertainty. Our analysis shows that the direction of shear stress on the auxiliary plane does not coincide with the hypothetical slip direction unless the B -axis is parallel to one of the three principal stress directions. Based on this simple fact, we propose a new algorithm dealing with the ambiguity in fault/auxiliary plane identification. We also propose a method to handle the inhomogeneity problem of data quality, which is common and unique for focal mechanism data. Different inversion methods and algorithms are applied to two sets of 'focal mechanism' data simulated from field fault-slip measurement data. The inversion results show that, among the four stress parameters inverted, the stress ratio suffers the most from the ambiguity in fault/auxiliary plane identity, whereas the solutions for the principal stress directions are surprisingly good. The errors in inversion solutions resulting from the fault/auxiliary plane ambiguity can be significantly reduced by controlling subjectively the sample variance of the measurement errors. Our results also suggest that the fault plane cannot be distinguished correctly from the auxiliary plane with a high probability on the basis of the stress inversion alone.  相似文献   

4.
We developed an inversion method to estimate the stress fields related to earthquake generation (seismogenic stress fields) from the centroid moment tensors (CMT) of seismic events by using Akaike's Bayesian information criterion (ABIC). On the idea that the occurrence of an earthquake releases some part of the seismogenic stress field around its hypocentre, we define the CMT of a seismic event by a weighted volume integral of the true but unknown seismogenic stress field. Representing each component of the seismogenic stress field by the superposition of a finite number of 3-D basis functions (tri-cubic B-splines), we obtain a set of linear observation equations to be solved for the expansion coefficients (model parameters). We introduce prior constraint on the roughness of the seismogenic stress field and combine it with observed data to construct a Bayesian model with hierarchic, highly flexible structure controlled by hyper-parameters. The optimum values of the hyper-parameters are objectively determined form observed data by using ABIC. Given the optimum values of the hyper-parameters, we can obtain the best estimates of model parameters by using a maximum likelihood algorithm. We tested the validity of the inversion method through numerical experiments on two synthetic CMT data sets, assuming the distribution of fault orientations to be aligned with the maximum shear stress plane in one case and to be random in the other case. Then we applied the inversion method to actual CMT data in northeast Japan, and obtained the pattern of the seismogenic stress field consistent with geophysical and geological observations.  相似文献   

5.
We propose a model which describes the formation of a strong asperity on a fault. We consider a fault surface which differs slightly from a plane due to a jog-like topographic variation. The fault is placed in an elastic space and is subject to a uniform stress field. The orientation of the fault is such that the normal traction (which is compressive) is greater on the topographic variation, determining a higher static friction and hence an asperity. The value of friction on this asperity depends on the magnitude of shear stress. For times of seismological interest, the increase in shear stress, at rates typical of tectonic processes, does not produce a sensible increase in friction with respect to the adjacent fault segments. A considerable increase in friction and the formation of a strong asperity (or even a barrier) can occur due to repeated seismic-slip episodes on the fault. Slip results in an elastic medium deformation, causing an increase in normal traction on the asperity and hence in friction. This process is described with the aid of a tensile Somigliana dislocation. Regions with high friction undergo partial fracturing of the fault-face material, which can produce fault gouge. The tensile dislocation introduces a small non-double-couple component in the seismic moment of the seismic event, the magnitude of this component depending mainly on the relative size of the asperity.  相似文献   

6.
Earthquakes potentially serve as abundant and cost-effective gauges of tectonic stress provided that reliable means exist of extracting robust stress parameters. Several algorithms have been developed for this task, each of which typically provides information on the orientations of the three principal stresses and a single stress magnitude parameter. A convenient way of displaying tectonic stress results is to map the azimuth of maximum horizontal compressive stress, which is usually approximated using the azimuth of the larger subhorizontal principal stress. This approximation introduces avoidable errors that depend not only on the principal stress axes' plunges but also on the value of the stress magnitude parameter. Here we outline a method of computing the true direction of maximum horizontal compressive stress ( S H) and show that this computation can be performed using only the four stress parameters obtained in routine focal mechanism stress estimation. Using theoretical examples and new stress inversion results obtained with focal mechanism data from the central Grímsey lineament, northern Iceland, we show that the S H axis may differ by tens of degrees from its commonly adopted proxy. In order to most appropriately compare tectonic stress estimates with other geophysical parameters, such as seismic fast directions or geodetically measured strain rate tensors, or to investigate spatiotemporal variations in stress, we recommend that full use be made of the routinely estimated stress parameters and that a formal axis of maximum horizontal compression be calculated.  相似文献   

7.
贾国强 《极地研究》1990,2(2):81-85
1986年3月30日至12月25日为期271天的冬季地震观测中,中国南极长城站地震台共记录到各种震动3000余次,其中大部分为长城湾冰层破裂产生的微震,4次为南设得兰群岛邻近海域中的浅源地震以及5月7日阿留申群岛发生的8.1级地震和4月14日南桑韦奇群岛发生的6.4级地震。冰震与构造地震具有明显的差异。1986年11月16日的地震记录为分析冰震与构造地震的区别提供了很好的例证。冰震具有初动尖锐、频率高和衰减快的特征。根据初动和波型很容易将冰震与构造地震区分开。  相似文献   

8.
We explore the possibility of determining the actual fault plane of an earthquake from the inversion of near-source displacement seismograms of one station when a finite-dimension source is used instead of a point source model and when the complete displacement is taken into account, including near-field waves. Tests on synthetic seismograms and real data recorded at local distances show that this is possible even with a single, three-component station. A single accelerogram available for the Erzincan, Turkey, 1992 March 13, M s = 6.8 earthquake is inverted and the solution found is compatible with other seismological studies and with the mechanism expected for the North Anatolian Fault.  相似文献   

9.
The Middle Durance fault system, southeastern France, is a slow active fault that produced moderate-size historical seismic events and shows evidence of at least one   M w ≳ 6.5  event in the last 29 000 yr. Based on dynamic rupture simulation, we propose earthquake scenarios that are constrained by knowledge of both the tectonic stress field and of the 3-D geometry of the Durance fault system. We simulate dynamic rupture interaction among several fault segmentations of different strikes, dips and rakes, using a 3-D boundary integral equation method. 50 combinations of reasonable stress field orientations, stress field amplitudes and hypocentre locations are tested. The probability of different rupture evolutions is then computed. Each segment ruptures mainly as a single event (44 per cent of the 50 simulations test in this paper). However, the probability that an event triggers simultaneously along three segments is high (26 per cent), leading to a potential rupture length of 45 km. Finally, 2 per cent of the simulations occur along four adjacent segments, producing the greatest total rupture length of 55 km. The simulation results show that the southernmost segment is most easily ruptured (40 per cent), because of its favourable orientation with respect to the tectonic stress and of its favourable location for interaction with the other segments. South-bound unilateral propagation is slightly preferable (41 per cent), compared to north-bound unilateral and bilateral propagation modes. Although, these rupture scenarios cannot be directly translated into probabilities of occurrence, they do provide a better insight as to which rupture scenarios are more likely, an important element to better estimate near-field strong ground motion and seismic hazard.  相似文献   

10.
Estimate of the stress field in Kilauea's South Flank, Hawaii   总被引:1,自引:0,他引:1  
We estimated stress and seismic strain tensors for the Kilauea volcano's south flank. the stress orientation inversion and the seismic strain calculation were performed using fault-plane solutions. the principal stress and seismic strain directions are approximately uniformly distributed in space and time during the interval covered by the data. However, the σ1, σ3 plane is approximately orthogonal to the 1, 3 plane. Therefore, a weak layer may exist beneath the south flank. σ1 has a plunge of 59° and an azimuth of 152°, with a 10° 95 per cent confidence range. We also developed a stress magnitude inversion to estimate magnitudes of boundary and interior stresses. In this inversion, the principal stress directions were taken as constraints in the seismic volume, and surface geodetic observations were used as data. the maximum magmatic pressure in Kilauea's rift zone is about 160 MPa. the direction of σ1 can be interpreted as the superposition of hydrostatic stress ( pgh ) and magmatic pressure. Without the constraint imposed by the direction of σ1, the estimated pressure is only 60MPa, the distribution of magmatic pressure may be similar to that of pgh . In contrast, the upper rift zone may be in tension. the shear stress in the rift zone is about one order of magnitude smaller than the maximum compressive stress, supporting the interpretation of magmatic flow as fluid in dikes or channels. the combination of stress orientation inversion, seismic strain calculation, and stress magnitude inversion performed in this study provides a means by which to estimate the stress state in seismic areas.  相似文献   

11.
Earthquake prediction: a new physical basis   总被引:16,自引:0,他引:16  
Summary. Subcritical crack growth in the laboratory occurs slowly but progressively in solids subjected to low stresses at low strain rates. The cracks tend to grow parallel to the maximum compressive stress so that, when this stress is aligned over a large enough region, the cracks will also be aligned and possess effective seismic anisotropy. It is suggested that such subcritical crack growth produces extensive-dilatancy anisotropy (EDA) throughout earth-quake preparation zones. This process is a possible driving mechanism for earthquake precursors observed at substantial distances from impending focal zones, and provides, in the shear-wave splitting which has been observed in several seismic regions, a possible technique for monitoring the build-up of stress before earthquakes.  相似文献   

12.
Summary. The 1973 Hawaii earthquake occurred north of Hilo, at a depth of 40 to 50km. The location was beneath the east flank of Mauna Kea, a volcano dormant historically, but active within the last 4000 yr. Aftershocks were restricted to a depth of 55–35km. The event and its aftershock sequence are located in an area not normally associated with the seismicity of the Mauna Loa and Kilauea calderas. The earthquake was a double event, the epicentres trending NE-SW. The events were of similar size and faulting mechanism. The fault plane solutions obtained by seismic waveform analysis are a strike-slip fault striking EW and dipping 55° S, the auxiliary plane a NS vertical plane with a faulting plunge of 35°. The axis of maximum compressive stress is aligned with the direction of the gravity gradient associated with the island of Hawaii. The fault plane striking EW parallels a surface feature, the Mauna Kea east rift zone. The earthquakes were clearly not associated with volcanic activity normally associated with Mauna Loa and Kilauea and may indicate a deep seated prelude to a resumption of activity at Mauna Kea.  相似文献   

13.
We use a combination of seismicity. tectonic features, focal mechanisms, seismic strain and postseismic movement to study the western part of North Algeria, the El Asnam region and its surrounding area in particular. A seismotectonic map of this part of Algeria, delimited by the Mediterranean Sea in the north and the Tellian mountains in the south, was built from available geological and seismological data. An examination of this map shows that the most significant earthquakes are concentrated along tectonic features and quaternary basins elongated in an east-west direction, suggesting NNW-SSE compressional movements. During the large El Asnam earthquake of 1980 October 10, M w= 7.1, vertical movement was measured along a 40 km northeast-southwest thrust fault. These movements were determined geodetically in 1981 with reference to a basic network previously measured in 1976. In order to control postseismic movement and to ensure the monitoring of the seismic area, a dense geodetic network has been regularly measured since 1986, both in planemetry and altimetry. The results of the altimetric remeasurements show significant vertical movements. The elevation changes of the benchmarks have been deduced from precise levelling measurements: a remarkable uplift (5.1 ± 1.9 mm yr−1) of the northwestern block, during the 1986-91 period has been observed, whereas the southeastern block is seen to be relatively stable. The Sar El Marouf anticline, situated along the central segment of the El Asnam surface breaks, appears to be growing with a maximum postseismic slip rate of (9.6 ± 1.4 mm yr−1). The mean uplift rates computed for the northwestern block support the view that the 1954 earthquake did not occur on the same reverse fault as the 1980 event.  相似文献   

14.
Microseismicity and faulting geometry in the Gulf of Corinth (Greece)   总被引:7,自引:0,他引:7  
During the summer of 1993, a network of seismological stations was installed over a period of 7 weeks around the eastern Gulf of Corinth where a sequence of strong earthquakes occurred during 1981. Seismicity lies between the Alepohori fault dipping north and the Kaparelli fault dipping south and is related to both of these antithetic faults. Focal mechanisms show normal faulting with the active fault plane dipping at about 45° for both faults. The aftershocks of the 1981 earthquake sequence recorded by King et al . (1985 ) were processed again and show similar results. In contrast, the observations collected near the western end of the Gulf of Corinth during an experiment conducted in 1991 ( Rigo et al . 1996 ), and during the aftershock studies of the 1992 Galaxidi and the 1995 Aigion earthquakes ( Hatzfeld et al . 1996 ; Bernard et al . 1997 ) show seismicity dipping at a very low angle (about 15°) northwards and normal faulting mechanisms with the active fault plane dipping northwards at about 30°. We suggest that the 8–12 km deep seismicity in the west is probably related to the seismic–aseismic transition and not to a possible almost horizontal active fault dipping north as previously proposed. The difference in the seismicity and focal mechanisms between east and west of the Gulf could be related to the difference in the recent extension rate between the western Gulf of Corinth and the eastern Gulf of Corinth, which rotated the faults dipping originally at 45° (as in the east of the Gulf) to 30° (as in the west of the Gulf).  相似文献   

15.
Summary. A composite fault plane solution of aftershocks of the 4.8 ML Carlisle earthquake of 1979 December 26, and the geographic distribution of their epicentres, indicate the predominance of right-lateral strike-slip focal mechanisms, with a significant component of dip-slip faulting, on a NW–SE trending fault zone. Data presented here, combined with an alternative interpretation of the published results of King, closely constrain the possible fit of nodal planes. The strike of the NW–SE nodal plane is in excellent agreement with a trend in aftershock epicentres. The aftershock zone is close to the edge of a long positive NW–SE trending gravity anomaly.  相似文献   

16.
在第27次中国南极科学考察度夏期间,针对长城站原地震台受干扰源(如发电栋、冷库)的影响,对台站进行了重新选址工作,并完成了新台站的基建工程(摆坑、电缆布设等),架设了一套宽频带地震仪。对新台站记录的数据进行分析表明新台站运行稳定,背景噪音小,记录的地震事件信噪比高,这为下一步开展相关地震学方面的研究将提供高质量的数据。尽管本次科考地震观测时间短,但是新台站不仅观测到了远震记录,而且观测到了长城站附近地区的近震和疑似冰震的记录。单台定位结果显示4次近震分布基本与南设得兰群岛走向平行,且震源深度由东北向西南逐渐变深。  相似文献   

17.
Dynamic stress variations due to shear faults in a plane-layered medium   总被引:11,自引:0,他引:11  
A complete set of expressions is presented for the computation of elastic dynamic stress in plane-layered media. We use a discrete-wavenumber reflectivity method to compute the stress field radiated by arbitrary moment-tensor sources. The expressions derived here represent an interesting tool for both-the observational and theoretical analysis of dynamic stress changes associated with earthquake phenomena. Dynamic stress changes associated with a strike-slip fault having unilateral rupture are shown. This modelling, which is similar to the 1992 Landers California earthquake, illustrates the effects of distance, directivity and depth on transient stress changes.  相似文献   

18.
53 local earthquakes recorded at 2.5 km depth in the Cajon Pass scientific borehole are analysed for shear-wave splitting. The time delays between the split shear waves can be positively identified for 32 of the events. Modelling these observations of polarizations and time delays using genetic algorithms suggests that the anisotropic structure near Cajon Pass has orthorhombic symmetry. The polarization of the shear waves and the inferred strike of the stress-aligned fluid-filled intergranular microcracks and pores suggests that the maximum horizontal compressional stress direction is approximately N13°W. This is consistent with previous results from earthquake source mechanisms and the right-lateral strike-slip motion on the nearby San Andreas Fault, but not with stresses measured within the uppermost 3 km of the borehole. This study suggests that the San Andreas Fault is driven by deeper tectonic stresses and the present understanding of a weak and frictionless San Andreas Fault may need to be modified. The active secondary faulting and folding close to the fault are probably driven by the relatively shallow stress as measured in the 3.5 km deep borehole.  相似文献   

19.
Summary. The ScSp wave converted from the ScS wave at the boundary between the descending lithospheric slab and the mantle above it was clearly observed from a nearby deep earthquake with magnitude 7.7 at some stations of the seismic network of Tohoku University which covers the Tohoku District, the northeastern part of Honshu, Japan. By applying the three-dimensional seismic-ray tracing method, the location of this boundary was determined from the difference in arrival time between the ScS and ScSp waves. The result shows that the upper boundary of the descending slab lies exactly on the upper plane of the double-planed deep seismic zone found in the Northeastern Japan Arc.
There is an additional evidence that the boundary is located on the upper plane of the double-planed deep seismic zone. The hypocentre distribution of intermediate-depth earthquakes located by the small-scale seismic-array observation is extremely different from that obtained by the relatively large-scale seismic network. The discrepancy in the distribution of hypocentres of the same earthquake independently located is well explained by the inclined lithospheric slab model derived from the difference in arrival time between the ScS and ScSp waves.
The earthquakes with reverse faulting or with down-dip compressional stresses occur at the upper boundary of the descending slab. Within the descending slab, the earthquakes with down-dip extensional stresses also occur in a very narrow zone from 30 to 40 km below the dipping boundary in the depth range from 50 to about 200 km, and these shocks form the lower plane of the double-planed deep seismic zone.  相似文献   

20.
Following the 1996 February 18 M L = 5.2 earthquake in the Agly massif in the eastern French Pyrenees, we installed a temporary network of seismometers around the epicentre. In this paper, we analyse 336 well-located aftershocks recorded from February 19 to February 23 by 18 temporary stations and two permanent stations located less than 35  km from the epicentre. Most aftershocks have been located with an accuracy better than 1.5  km in both horizontal and vertical positions. Their spatial distribution suggests the reactivation of a known fault system. We determined 39 fault-plane solutions using P -wave first motions. Despite their diversity, the focal mechanisms yield an E–W subhorizontal T-axis. We also determined fault-plane solutions and principal stress axes using the method developed by Rivera & Cisternas (1990 ) for the 15 best-recorded events. We obtain a pure-shear-rupture tectonic regime under N–S subhorizontal compression and E–W subhorizontal extension. These principal stress axes, which explain the focal mechanisms for at least 75 per cent of the 39 aftershocks, are different from the axes deduced from the main shock. The post-earthquake stress field caused by the main-shock rupture, modelled as sinistral strike slip on three vertical fault segments, is computed for various orientations and magnitudes of the regional stress field, assumed to be horizontal. The aftershock distribution is best explained for a compressive stress field oriented N30°E. Most aftershocks concentrate where the Coulomb failure stress change increases by more than 0.2  MPa. The diversity of aftershock focal mechanisms, poorly explained by this model, may reflect the great diversity in the orientations of pre-existing fractures in the Agly massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号