首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   

2.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for ~1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M~6), previously unstudied, produced tephra (coded PL2) of a volume of 10–12 km3 (11–13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5–59.5 wt%, K2O = 2.3–2.7 wt%, Al2O3 = 15.8–16.5 wt%, and P2O5 = 0.5–0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (>10× mantle values), moderate enrichment in LREE (La/Yb ~ 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of >600 km from the source. New high-precision 14C dates suggest that the PL2 eruption occurred ~10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine 14C dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 ± 64 14C years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas—early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of ~110 km.  相似文献   

4.
We document the mineralogical and geochemical composition of tephra layers identified in the late Quaternary sediments of Puyehue Lake (Southern Volcanic Zone of the Andes, Chile, 40°S) to identify the source volcanoes and to present the first tephrostratigraphic model for the region. For the last millennium, we propose a multi-criteria correlation model based on five tephra layers identified at seven coring sites. The two upper tephras are thin fine-grained green layers composed of more than 80% rhyodacitic glass shards, and associated to the AD 1960 and AD 1921-22 eruptions of the Puyehue-Cordon de Caulle volcanic complex. The third tephra is a sandy layer dominated by orthopyroxene, and related to the AD 1907 eruption of Rininahue maar. An olivine-rich tephra was deposited at the end of the 16th century, and a tephra characterized by a two-pyroxene association marks the second half of the first millennium AD. In addition, we detail the tephra succession of an 11.22-m-long sediment core covering the last 18,000 yr. The results demonstrate that the central province of the Southern Volcanic Zone has been active throughout the last deglaciation and the Holocene, with no increase in volcanic activity during glacial unloading.  相似文献   

5.
A hitherto unknown distal volcanic ash layer has been detected in a sediment core recovered from the southeastern Levantine Sea (Eastern Mediterranean Sea). Radiometric, stratigraphic and sedimentological data show that the tephra, here termed as S1 tephra, was deposited between 8970 and 8690 cal yr BP. The high-silica rhyolitic composition excludes an origin from any known eruptions of the Italian, Aegean or Arabian volcanic provinces but suggests a prevailing Central Anatolian provenance. We compare the S1 tephra with proximal to medial-distal tephra deposits from well-known Mediterranean ash layers and ash fall deposits from the Central Anatolian volcanic field using electron probe microanalyses on volcanic glass shards and morphological analyses on ash particles. We postulate a correlation with the Early Holocene ‘Dikkart?n’ dome eruption of Erciyes Da? volcano (Cappadocia, Turkey). So far, no tephra of the Central Anatolian volcanic province has been detected in marine sediment archives in the Eastern Mediterranean region. The occurrence of the S1 tephra in the south-eastern part of the Levantine Sea indicates a wide dispersal of pyroclastic material from Erciyes Da? more than 600 km to the south and is therefore an important tephrostratigraphical marker in sediments of the easternmost Mediterranean Sea and the adjacent hinterland.  相似文献   

6.
Andesitic and basaltic andesitic tephra layers are abundant in Holocene deposits from the Antarctic Peninsula. Visually discernible tephra horizons occur in three lakes on Livingston Island. Tephra in two other lakes and in a moss bank on Elephant Island, with very low ash concentrations, were detected magnetically. Deception Island is the most likely volcanic source for the tephra. With direct 14C dating, age/depth curves, and cross-correlations at least 14 tephra horizons dating to between ca. 4700 and 250 yr B.P. were identified and now form the basis for a preliminary regional tephrochronology that will be a valuable dating tool for investigating the Holocene climatic history of Antarctica.  相似文献   

7.
The Eifel Laminated Sediment Archive (ELSA), which comprises several cores from maar lakes, includes numerous tephra layers spanning the last 140 000 years. The sediment cores are dated by 14C and thermoluminescence as well as tuned to Greenland stadial–interstadial successions. Within the last glacial cycle, the Eifel Volcanic Fields are source to several widespread tephra layers, namely the Laacher See, Eltville, Rambach and Rocourt Tephra. However, a corresponding source volcano was so far only identified for the Laacher See Tephra. In this study we use glass and clinopyroxene geochemistry to link the remaining tephra layers to possible eruption centers within the West and East Eifel Volcanic Fields: while we demonstrate that the Eltville Tephra originated from an earlier eruption of the Laacher See Volcano at 24 300 a bp from within the East Eifel Volcanic Field, the Rambach and Rocourt Tephras are sourced from the West Eifel Volcanic Field and erupted from Wartgesberg at 27 900 a bp and Pulvermaar at 75 000 a bp , respectively. Phases of volcanic activity peaked at 10 000–30 000 and 60 000–80 000 a bp and were thus erupted around the temperature minima of the last glacial cycle. The longest phase of dormancy between individual vents was around 30 000 years long, within the last interglacial.  相似文献   

8.
The synthesis of paleoclimatic archives provided by loess and alluvial sequences of central Argentina has been hindered by the lack of a cohesive lithostratigraphic framework extending across the Chaco-Pampean plains and catchments of the Rios Desaguadero, Colorado, and Negro. This condition originates in part from the dearth of absolute chronological controls. The occurrence of discrete tephra layers across this region may provide an opportunity to address this deficiency if a tephrochronological framework can be established. The potential of such a project is assessed within the context of a pilot study constrained within alluvial sequences of central western Argentina proximal to potential source vents in the Southern Volcanic Zone. The intersite discrimination and correlation of tephra layers on a geochemical basis is examined, with indirect chronological control for the eruption of each generated by optical dating. Alluvial sediments on either side of each of five tephra units at a type site were dated using the optically stimulated luminescence of fine-silt-sized quartz, thus providing an age control on each tephra (ca. 24,000, 30,000, 32,000, 39,000, and 48,000 yr). The geochemical composition of each tephra was derived. Using these data, tephra layers at other sites in the study area were geochemically analyzed and, in instances of statistical concordance in major oxide structure, correlated to the type site and therefore ascribed ages. This methodology identified a further sixth volcanic event between ca. 24,000 and 30,000 yr not registered by type-site tephras. The extension of this initial tephrochronological framework beyond the alluvial sequences of central western Argentina is encouraged by the occurrence of geochemically distinct tephra verified and dated in this study.  相似文献   

9.
The central part of the Kamchatka Peninsula is characterized by a well defined depression associated with active volcanism, aligned NE–SW. On the east, the depression is bounded by a prominent system of active faults known as the East Kamchatka Fault Zone (EKFZ). In order to improve understanding of the behaviour and kinematic role of this fault zone a fieldwork programme, including study of trenches, was conducted in the north-central part of this system. Aerial photograph analysis, ground-truthed, indicates a westward fault dip with predominantly normal slip, while lateral offsets of river terraces and stream channels demonstrate a combined dextral component. Over 20 excavated pits and natural exposures were examined to confirm a detailed tephra succession extending from the early Holocene to recent historic eruptions. This chronological framework then provided age control on five past faulting events recognised in three trenches. These events took place at about 10.5, 6.0, 4.5 and, in a two-event succession within a short time span, at 3.3–3.2 ka BP. Event clustering may be characteristic and fault length–displacement values suggest earthquakes of M6.5, thus representing a significant new element in regional seismic hazard evaluations; additional to events generated at the subduction interface. The relatively long gap in faulting since the two most recent events may also be significant for hazard scenarios and there is a possible link between the faulting and volcanic activity in the depression. Overall, the EKFZ, together with the Nachiki Transverse Zone farther south, is thought to define a regional-scale block that is extending eastwards independently from the rest of Kamchatka.  相似文献   

10.
Tephra stratigraphical and tephrochronological studies of marine core MD99‐2275 on the North Icelandic shelf have revealed 58 new tephra horizons within the last 7050 cal. a BP, bringing the total number of identified tephra layers to 76. So far, over 100 tephra layers have been identified in the entire core spanning the last 15 000 years. The majority of the newly identified tephra layers are basaltic in composition and originate from the most active volcanic systems in Iceland, namely Grímsvötn, Veidivötn‐Bárdarbunga and Katla. A total of 40 tephra layer land–sea correlations have been made within this time period, of which 16 represent absolutely dated tephra markers. In addition, two tephra marker series are revealed in the marine sediments and in the terrestrial tephra stratigraphy, located between c. 2300–2600 and between 5700–5900 years. For the last 15 000 years, 21 tephra markers have been recognized. The marine tephra layer frequency (TLF) reveals two peaks, within the last 2000 years, and between 5000 and 7000 years ago. It shows the same general characteristics as the terrestrial TLF curve in Iceland, which indicates that marine sediments can yield important information about volcanism in Iceland. This is useful in time segments in which terrestrial records are poor or non‐existent. The study contributes to a high‐resolution tephrochronological framework on the North Icelandic shelf, with core MD99‐2275 representing a potential stratotype section in the area, and for the northern North Atlantic–Nordic Seas region, as well as being an important contribution to the Lateglacial–early Holocene volcanic history of Iceland.  相似文献   

11.
Tephra layers with Icelandic provenance have been identified across the North Atlantic region in terrestrial, lacustrine, marine and glacial environments. These tephra layers are used as marker horizons in tephrochronology including climate studies, archaeology and environmental change. The major element chemistries of 19 proximally deposited Holocene Icelandic silicic tephra layers confirm that individual volcanic systems have unique geochemical signatures and that eruptions from the same system can often be distinguished. In addition, glass trace element chemistry highlights subtle geochemical variations between tephra layers which appear to have identical major element chemistry and thus allows for the identification of some, if not all, tephra layers previously considered identical in composition. This paper catalogues the compositional variation between the widespread Holocene Icelandic silicic tephra deposits.  相似文献   

12.
We review the current knowledge about Southeast Asian volcanoes and their eruption histories, and focus on identifying tephrochronologic markers representing major explosive eruptions in order to further future palaeoclimate and volcanological studies. Forty-one volcanic edifices in Southeast Asia have been classified as large calderas by Whelley et al. (2015) and thus have, or are likely to have, produced large explosive eruptions with a Volcanic Explosivity Index (VEI) of 6–8. Unfortunately, only 20 such eruptions have known ages, spanning from 1.2 Ma to 1991 ad , and fewer have geochemical data that can be used for tephrostratigraphic correlations. Volcanic products from different geodynamic regions and different sources can generally be distinguished on major element plots (e.g. K2O versus CaO) of matrix glass composition. However, the distinction of multiple eruptions from the same source often requires additional data such as trace element compositions of matrix glass and/or mineral compositions. Biotite, but also magnetite compositions (MgO and TiO2 content in particular) appear to be very discriminating. Up to nine tuffs in addition to the three to four Toba tuffs can be utilised as widespread tephrochronologic markers and span a range from 1.2 to 1.6 Ma to recent. As only a few Holocene major eruptions have been well characterised and dated, many large calderas are still unstudied, and many distal tephra layers are still lacking a source, more tephrochronologic markers can certainly be defined in the future.  相似文献   

13.
The new Antarctic TALDICE ice core (72° 49′ S, 159° 11′ E, 1620 m depth), containing abundant primary tephras, provides the opportunity to elucidate the late Quaternary volcanic history of the south polar region, as well as to broaden the East Antarctic tephrostratigraphic framework. Here grain size and glass compositional data for representative tephra layers from the last 70 ka core section are used for source identification. Results point to origin of layers from centres of the Melbourne Volcanic Province (McMurdo Volcanic Group), located ~250 km from the coring site. Occurrence of tephra layers within the ice core record suggests that explosive activity in the identified source was not constant over the considered period, with a minimum of activity between 20 and 35 ka, and increased activity back to 65 ka. In addition to palaeovolcanic implications, the TALDICE tephra layers offer prospects for firm correlations between diverse widely separated palaeoarchives and for accurate dating of the Antarctic climatic record. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Just like contemporary sediments, peat itself is a good repository of information about climate change, the effects of volcanic activity on climate change have been truly recorded in peat, since it is a major archive of volcanic eruption incidents. A section of sand was identified as tephra from the Jinchuan peat, Jilin Province, China, for the grains look like slag with surface bubbles and pits, characterized by high porosity, and loose structure with irregular edges and corners. According to the peat characteristics of uniform deposition, the tephra was dated at 2002–1976 a B.P. by way of linear interpolation, so the time of volcanic eruption was 15 B.C.–26 A.D. (the calibrated age). While the geochemical characteristics of tephra in this study are quite the same as those of tephra from the Jinlongdingzi volcano at Longgang and from alkaline basaltic magma, with the contents of SiO2<55%, and the similar contents to Al2O3 and Fe, but the contents of Na2O>K2O. We speculated that the tephra in this study came from the Longgang volcano group. Compared with 11 recorded volcanic eruption events as shown on the carbon and oxygen isotope curves of the Jinchuan peat cellulose, it is obviously seen that adjacent or large-scale volcanic eruptions are precisely corresponding to the minimum temperature and humidity. It seems that these volcanic eruptions indeed affected the local climate, leading to the drop of regional temperature and humidity. As a result, there was prevailing a cold and dry climate there, and all these changes can be well recorded in peat. So the comparison of volcanic eruption events with information about climate change developed from peat, can provide strong evidence for the impact of volcanism on climate change.  相似文献   

16.
In regions with limited knowledge of the historical volcanic record, like remote areas in the Andean Southern Volcanic Zone, the definition of reliable age-depth models for lake sequences represents a valuable tool for tephra layers dating. In Lake Futalaufquen (42.8°S), Northern Patagonia, a short sedimentary sequence was extracted after the AD 2008 Chaitén eruption with the purpose to analyze the records of volcanic eruptions at these poorly studied latitudes. The sequence was dated by 210Pb, 137Cs, and 14C techniques. Five tephras were identified for the last 1600 years, restricted to the last 5 centuries. Sedimentology, morphology, and geochemical properties allowed the characterization of the tephras and their correlation with tephras recently identified proximal to the sources, mainly from Chaitén and Huequi volcanoes, and Michinmahuida accessory cones, representing the first distal records reported of these tephras. Furthermore, tephras modeled ages obtained by the sequence age-depth model shrink the ages for the volcanic events, like a potential cycle of activity from Michinmauida accessory cones during AD 1530 ± 55, one eruption from Huequi volcano at AD 1695 ± 50, and a possible recent eruption from Chaitén at AD 1775 ± 40. Additionally, the work contributes to improve the regional volcanic records knowledge, basic for volcanic hazard assessment.  相似文献   

17.
The tephrostratigraphy of lake sediments in the Endinger Bruch provides the first robust age model for the Lateglacial palynological records of Vorpommern (north‐east Germany). Cryptotephra investigations revealed six tephra layers within sediments spanning from Open vegetation phase I (~Bølling, ~15 ka) to the Early Holocene Betula/Pinus forest phase (~Pre‐boreal, ~10.5 ka). Four of these layers have been correlated with previously described tephra layers found in sites across Europe. The Laacher See Tephra (Eifel Volcanic Field) is present in very high concentrations within sediments of the Lateglacial Betula (/Pinus) forest phase (~Allerød). The Vedde Ash (Iceland) lies midway through Open vegetation phase III (~Younger Dryas). The Hässeldalen and the Askja tephras (Iceland) lie in the Early Holocene Betula/Pinus forest phase (~Preboreal). These tephra layers have independently derived age estimates, which have been imported into the Endinger Bruch record. Furthermore, the layers facilitate direct correlation of the regional vegetation record with other palaeoenvironmental archives, which contain one or more of the same tephra layers, from Greenland to Southern Europe. In doing this, localized variations are confirmed in some aspects of the pollen stratigraphy; however, transitions between the main vegetation phases appear to occur synchronously (within centennial errors) with the equivalent environmental transitions observed in sites across the European continent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the first detailed study of a late Pleistocene marine tephra sequence from the NW Pacific, downwind from the Kamchatka volcanic arc. Sediment core SO201-2-40, located on the Meiji Rise ~400 km offshore the peninsula, includes 25 tephras deposited within the last 215 ka. Volcanic glass from the tephras was characterized using single-shard electron microprobe analysis and laser ablation inductively coupled mass spectrometry. The age of tephras was derived from a new age model based on paleomagnetic and paleoclimate studies. Geochemical correlation of distal tephras to Kamchatkan pyroclastic deposits allowed the identification of tephras from the Karymsky, Gorely, Opala and Shiveluch eruptive centers. Three of these tephras were also correlated to other marine and terrestrial sites and hence are identified as the best markers for the north-west Pacific region. These are an early Holocene tephra from the Karymsky caldera (~8.7 ka) and two tephras falling into the Marine Isotope Stage (MIS) 6 glacial time: an MIS 6.4 tephra from Shiveluch (~141 ka) and the MIS 6.5 Rauchua tephra (~175 ka) from Karymsky. The data presented in this study can be used in paleovolcanological and paleoceanographic reconstructions.  相似文献   

19.
The tephrochronology of Iceland and the North Atlantic region is reviewed in order to construct a unified framework for the last 400 kyr BP. Nearly all of the tephra layers described are also characterised geochemically. A number of new tephra layers are analysed for the first time for their geochemical signature and a number of pre‐Holocene tephra layers have been given an informal denotation. The tephrostratigraphy of Ash Zone II is highlighted. Where possible the rhyolitic tephra layers found outside Iceland have been correlated to known Icelandic tephra layers or to the volcanic source area. The application of tephra fallout in various depositional environments is described and discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Detailed tephrochronologies are built to underpin probabilistic volcanic hazard forecasting, and to understand the dynamics and history of diverse geomorphic, climatic, soil-forming and environmental processes. Complicating factors include highly variable tephra distribution over time; difficulty in correlating tephras from site to site based on physical and chemical properties; and uncertain age determinations. Multiple sites permit construction of more accurate composite tephra records, but correctly merging individual site records by recognizing common events and site-specific gaps is complex. We present an automated procedure for matching tephra sequences between multiple deposition sites using stochastic local optimization techniques. If individual tephra age determinations are not significantly different between sites, they are matched and a more precise age is assigned. Known stratigraphy and mineralogical or geochemical compositions are used to constrain tephra matches. We apply this method to match tephra records from five long sediment cores (≤ 75 cal ka BP) in Auckland, New Zealand. Sediments at these sites preserve basaltic tephras from local eruptions of the Auckland Volcanic Field as well as distal rhyolitic and andesitic tephras from Okataina, Taupo, Egmont, Tongariro, and Tuhua (Mayor Island) volcanic centers. The new correlated record compiled is statistically more likely than previously published arrangements from this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号