首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr–Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb–Sr–Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.  相似文献   

2.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   

3.

Results of isotope Sr, Ns, and O analyses of volcanic rocks from the Uda sector of the West Transbaikal Rift Zone have allowed estimation of the character of interaction of their parental mantle melts with crustal rocks. The smallest magnitude of this interaction has been found in the compositions of Late Cretaceous (83–70 Ma) volcanics, the geochemical and isotope markers of which suggest their derivation from a moderately enriched mantle compositionally resembling OIB sources. The Early Cretaceous volcanics were derived from mantle sources that included a mantle enriched by subduction. While ascending through the crust, the parental melts of the Uda Complex (130–111 Ma) were contaminated by the lower crust matter. The Zazin Complex magmas (143–135 Ma) have features suggesting their interaction with upper crustal granitoids of the Angara–Vitim Batholith.

  相似文献   

4.
The petrogenesis of Abu Khruq, an 89 Ma alkaline ring complex of eastern Egypt which is composed of alkali gabbros and both silica over- and undersaturated syenites, has been investigated. Major and trace element relationships and Nd and Sr isotope data are consistent with formation of the gabbros from an alkaline mafic magma that experienced extensive fractionation, and all syenites from a felsic derivative of this melt. The parental magma had an 87Sr/86Sr of 0.7030 and an 143Nd/144Nd of 0.512750 (Nd = +4.4) indicating derivation from a depeleted mantle source. The initial 143Nd/144Nd ratios are: 0.512721 to 0.512748 for the gabbros, 0.512739 to 0.512750 for the alkali syenites and trachytes, 0.512717 to 0.512755 for the nepheline syenites, and, 0.512706 to 0.512732 for the quartz syenites. In contrast, analyzed Precambrian granites from eastern Egypt have generally lower 143Nd/144Nd ratios (ranging from 0.51247 to 0.51261 or Nd = -0.8 to 1.7, for 89Ma); their Nd model ages range from 775 to 935 Ma and suggest there was no significant input of pre-Pan-African crust in their formation. Among Abu Khruq rocks, 143Nd/144Nd ratios indicate that the quartz syenites formed by open-system, crustal contamination processes whereas the nepheline syenites experienced little or no contamination. Modeling shows that contamination occurred at various stages, affecting both mafic and more evolved compositions with input of about 20% crustal Nd for the most contaminated samples. The degree of contamination is related to the silica saturation of the quartz syenites. Simplified modeling of magma evolution within Petrogeny's Residua System demonstrates the ability of AFC processes to cause a critically undersaturated magma to evolve across the feldspar join and produce oversaturated rocks. The oversaturated syenites at Abu Khruq were produced in this manner whereas the nepheline syenites formed by fractionation without similarly large degrees of contamination. The results have broad implications for the formation of subvolcanic complexes in continental settings beyond the important production of silica oversaturated compositions from crustal interaction. They underscore the importance of crustal interactions in the formation of the various lithologies. Such interactions occur at various stages in the evolution of the magmas and, as such, are not strictly coupled with fractional crystallization. While previous study of Abu Khruq has demonstrated extensive hydrothermal alteration of O and Sr isotopes, the present work shows that the Nd isotope ratios were not significantly affected and thus reflect magmatic signatures. This feature combined with relatively small corrections for initial ratios emphasizes the utility of Nd isotopes for petrogenetic studies.  相似文献   

5.
The initial Nd and Sr isotopic ratios of cumulate rocks andminerals of the Kiglapait intrusion are pertinent as indicatorsof the processes that affected the Kiglapair magma while itwas resident in the crust. A Sm–Nd mineral isochron indicatesthat the crystallization age of the intrusion is 1305?22 millionyears. The initial Nd values range from—1?6 in the LowerZone to 6 in the Upper Zone and correlate with the anorthitecontent of plagioclase. The initial 87Sr/86Sr ratios are 0.70407to 0.70433 in the Lower Zone, and increase monotonically up-section(decreasing plagioclase anorthite content) to 0.7068 in theUpper Zone. These variations are attributed to assimilationof roof rock concurrently with crystallization. It is evidentthat replenishment of the chamber with uncontaminated magmawas important during the accumulation of the lower zone rocks,but did not occurduring crystallization of the Upper Zone. Amathematical model relating isotope ratio shifts to the relativerates of crystallization, assimilation, and replenishment ispresented. It is estimated that the rate of assimilation wasbetween 0.01 and 0.04 of the crystallization rate, and thatduring the accumulation of the Lower Zone, the rate of replenishmentwas about half of the crystallization rate. A formulation for‘assimilation efficiency’is presented that relatedthe actual amount of assimilation (determined from the isotopedata) to the thermodynamic maximum allowable amount. The assimilationefficiency of the Kiglapait intrusion is not tightly constrained,but appears to be of the order of 0.01 near the end of crystallizationand perhaps as high as 0.07 near the beginning. Further quantitativeestimates of assimilation efficiency in different intrusionsemplaced under different conditions may aid in understandingassimilation mechanisms and in assessing the role of assimilationin magmatic evolution in general. Many layered intrusions studiedto date have initial Nd isotope ratios close to the chondriticvalue (Nd= 0), suggestive of mantle magma sources that are chemicallyundepleted, and thus different from the sources of mid-oceanridge basalt and island-arec basalt.  相似文献   

6.
The paper reports first geological, chemical, mineralogical, Sr–Nd chemical–isotope, and geochronological data on the gabbroid massif discovered on the Hobbs coast in the Cape Burks area, West Antarctica. The area is made up of compositionally diverse gabbroids that are intersected by thin vein and dike bodies of mafic, intermediate, and fesic composition. The gabbroids are represented by olivine and olivinefree gabbros and gabbronorites, with sharply subordinate troctolites, gabbro–anorthosites, and anorthosites. The U–Pb SHRIMP–II zircon age of the gabbroids and vein rocks was estimated at 100 ± 1 Ma. The gabbroids were supposedly emplaced in the upper crust in tectonically active conditions. The thickness of the pluton is no less than 2.5–3 km. The rocks were crystallized from a highly fractionated melt. Their composition was mainly determined by accumulation and fractional crystallization. The origin of vein felsic rocks was likely related to an evolved residual liquid. The igneous complex was formed in a within–plate geodynamic setting, and its primary melts were derived from a weakly LILE enriched lithospheric mantle.  相似文献   

7.
Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5–19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary 18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), 18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (25 Ma) and Rio Hondo (21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. 18O values for all the postcaldera plutons overlap those of the precaldera rocks and Amalia Tuff, except for those for two late-stage rhyolite dikes associated with the Rio Hondo pluton that have 18O values of-8.6 and-9.5; these dikes are the only Latir rocks which may be largely crustal melts.Chemical and isotopic data from the Latir field suggest that large fluxes of mantle-derived basaltic magma are necessary for developing and sustaining large-volume volcanic centers. Development of a detailed model suggests that 6–15 km of new crust may have been added beneath the volcanic center; such an addition may result in significant changes in the chemical and Sr and Nd isotopic compositions of the crust, although Pb isotope ratios will remain relatively unchanged. If accompanied by assimilation, crystallization of pooled basaltic magma near the MOHO may produce substantial cumulates beneath the MOHO that generate large changes in the isotopic composition of the upper mantle. The Latir field may be similar to other large-volume, long-lived intracratonal volcanic fields that fundamentally owe their origins to extensive injection of basaltic magma into the lower parts of their magmatic systems. Such fields may overlie areas of significant crustal growth and hybridization.  相似文献   

8.
Geochronological data (~1800 dates) have been analyzed by the probabilistic statistical analysis of samplings of different subalkaline and alkaline rocks through the whole of geological time. The distribution of five groups of subalkaline and alkaline rocks within the Late Archean-Phanerozoic are strictly controlled by mantle cycles, which were distinguished from data on the upper mantle magmatic rocks. Since high alkali rocks are plume related, their universal participation in each of the revealed mantle cycles emphasizes the importance of this magmatism in the evolution of the crustal-mantle system. The initial Sr and Nd isotope ratios are subdivided into two groups: with mantle and crustal signatures. Mantle isotope ratios are typically observed throughout the entire geological interval of dated rocks, while the role of crustal isotope signatures increases from the Archean to Phanerozoic, reflecting the increasing the role of fluids and crustal rocks in the magmatic processes during the generation of mantle magmas and their consolidation in the crust. Since alkaline magmatic sources are formed during mantle metasomatism, which enriched the magma generation zones in incompatible elements, the repeated occurrence of this process in separate mantle zones may have lead to the anomalous accumulation of these elements, which should be reflected in the alkaline magmas.  相似文献   

9.
We report the first Nd isotopic data on the cumulate rocks of the Bushveld Complex, South Africa. We analysed 17 whole-rock samples covering 4700 m of stratigraphy through the Lower, Critical and Main Zones of the intrusion at Union Section, north-western Bushveld Complex. The basal ultramafic portions of the complex have markedly higher ɛNd(T) (−5.3 to −6.0) than the gabbronoritic Main Zone (ɛNd(T) −6.4 to −7.9). The rocks of the Upper Critical Zone have intermediate values. These results are in agreement with new Nd isotope data on marginal rocks and sills in the floor of the complex that are generally interpreted as representing chilled parental magmas, and with published Sr isotopic data, all of which show a larger crustal component in the upper part of the intrusion. In contrast, the concentrations of many highly incompatible trace elements are decoupled from the isotopic signatures. The basal portions of the complex have higher ratios of incompatible to compatible trace elements than the upper portions. The variations of isotopic and trace-element compositions are interpreted in terms of a change in the nature of the crustal material that contaminated Bushveld magmas. Those magmas that fed into the lower part of the complex had assimilated a relatively small amount of incompatible trace-element-rich partial melt of upper crust, whereas magmas parental to the upper part of the complex had assimilated a higher proportion of the incompatible trace-element-poor residue of partial melting. Received: 5 October 1999 / Accepted: 7 July 2000  相似文献   

10.
The Banshanping granitoid rocks distribute in the east of the North Qinling orogenic belt. It is a diorite-quartz diorite-granodiorite-granite series, spreading in a NW-SE direction, and intrudes into the Erlangping Group. The SiO2 content ranges from 57.04% to 76.56%, Na2O from 2.05% to 4.65%, K2O from 0.84% to 3.40%. Major element characteristics indicate that Banshanping granitoid rocks have properties of I type granotoids. SREE ranges from 36.51 ppm to 473.25 ppm, and LREE/HREE ratios lie between 3.95 and 22.18. Negative Eu anomalies are not obvious in most samples, though there are obvious Nb, P and Ti positive anomalies. The zircon LA-ICP-MS ages of Banshangping granitoid rocks are 496.0±8.1 Ma–486.9±9.3 Ma. Hf isotope shows that 176Hf/177Hf ratios range from 0.282721 to 0.282876, εHf(t) values from 8.5 to 14, all positive, and corresponding modal ages(TDM2) range from 559 Ma to 908 Ma. Based on Hf isotope characteristics and existing SmNd and Rb-Sr isotope data, we consider that the Banshanping granitoid rocks originate from mantlederived material, i.e. the igneous rocks that formed in Neoproterozoic, and there may be a certain amount of crust-derived material during the formation of Banshanping granitoid rocks.  相似文献   

11.
Omai is a high tonnage, low-grade, world-class gold deposit located in the Paleoproterozoic Guiana Shield. It is the second most important gold deposit in the Guiana Shield (after Las Cristinas, Venezuela), and one of the largest in South America (4.0 million oz.). Sm-Nd and Sr isotope data are presented for host rocks and for scheelite from auriferous quartz-carbonate-scheelite-sulfide-telluride veins from the Omai deposit. Gold-bearing veins are hosted by the Paleoproterozoic Barama-Mazaruni Supergroup, a greenstone belt sequence consisting of mafic volcanic rocks interbedded with sedimentary rocks that are intruded by quartz-feldspar porphyry and rhyolite dikes. This lithologic sequence was folded and metamorphosed to lower greenschist facies during the Paleoproterozoic Trans-Amazonian orogeny. The volcano-sedimentary unit was intruded by a post-tectonic quartz monzodiorite-diorite-hornblendite stock. Initial Nd isotope ratios for the Omai volcanic rocks range from ɛNd=+2.1 to +4.2. These values suggest that this part of the Guiana Shield was a site of new crust formation during the Paleoproterozoic and was not contaminated by older (Archean), reworked continental crust. Initial Nd isotope ratios for the Omai stock range between +0.5 and +2.3, which suggest limited contamination with previously formed continental crust. Although the Nd isotopic ratios of gold-related scheelites overlap with those of the host rocks, particularly the tholeiitic basalts at the interpreted time of vein emplacement, the lack of both isotopic mixing and significant Nd movement during the hydrothermal process suggest that the Nd isotope composition can be used to determine the isotopic characteristics of the ore fluid source area. At Omai, the ore fluid is largely derived from a radiogenic Nd source, represented by mantle or lower crustal reservoirs. Strontium isotope ratios for the scheelites cluster tightly between 0.7019 and 0.7021. The Sr isotope data suggest that unlike Nd, Sr was significantly mobile during the hydrothermal process. The fluids responsible for the Omai deposit may have picked up Sr along the flow path. The constant low Sr isotope values of scheelites probably reflect the key role that the local tholeiitic basalts played as the main source of Sr in the fluids. Whereas Nd isotopes identify the fluid source area, the Sr isotopes map the fluid flow paths. Received: 11 February 1999 / Accepted: 1 November 1999  相似文献   

12.
The Rand Granite is a heterogeneous metamorphosed granitoid rock complex with numerous wallrock inclusions situated in the Moldanubian Zone at the southern margin of the Central Schwarzwald Gneiss Complex. It is a largely mylonitized elongated body and is thrust over the Badenweiler-Lenzkirch Zone forming a nappe with shear zones along its northern and southern boundaries. It comprises meta-granites, meta-trondhjemites and biotite augen gneisses derived from monzogranites to granodiorites. Mineral behaviour indicates that the magmatic body has been deformed under upper greenschist facies conditions. Nappe thrusting, which also affected the South Schwarzwald Gneiss Complex, occurred in Visean time during high-temperature / low-pressure metamorphism. Kinematic indicators in the mylonites document E- to ESE-directed nappe transport, highly transpressive relative to the trend of the nappe boundaries and the foliation. The trondhjemites formed at 351 +5/-4 Ma, predating the Variscan HT metamorphism. They have initial Nd-values of +6.6 to +6.7 and relatively low initial 87Sr/86Sr ratios (0.7042 to 0.7063), indicating a predominant mantle origin. The granites and protoliths of the biotite augen gneisses probably crystallised between 436 and 377 Ma, suggested by U-Pb zircon model ages. They are different from the trondhjemites with low initial Nd-values (–4.7 to –3.3) and higher initial 87Sr/86Sr ratios (0.7068–0.7077), indicating that large part of the Rand Granite originated from anatexis of continental crust. Internal structure of zircons from the Rand Granite reveals mixing of magmas derived from both mantle and crust sources. These new data support an interpretation that the Rand Granite developed along an active continental margin and therefore represents a possible root of a Variscan magmatic arc.  相似文献   

13.
小秦岭碳酸岩位于华北板块南缘,其(87Sr/86Sr)i与εNd值分别介于0.70495~0.70552和-10.1~4.6之间,紧靠EM1地幔端元,但相对EM1具有低Sr和低Nd特征。Pb同位素与华北板块南缘完全不同,而是落在了南秦岭下地壳范围之内,这表明华北板块南缘下地壳或地幔已经受到南秦岭地壳物质俯冲置换的影响,即在晚三叠纪时期,秦岭地区的碰撞造山作用可能已经结束,转入伸展拉张的构造环境。并进一步论述了秦岭地区三叠纪花岗岩是在深部拉张的构造环境下形成以及具有幔源物质参与的特征。  相似文献   

14.
The magma sources for granitic intrusions related to the Mesozoic White Mountain magma series in northern New England, USA, are addressed relying principally upon Nd isotopes. Many of these anorogenic complexes lack significant volumes of exposed mafic lithologies and have been suspected of representing crustal melts. Sm–Nd and Rb–Sr isotope systematics are used to evaluate magma sources for 18 felsic plutons with ages ranging from about 120 to 230 Ma. The possibility of crustal sources is further examined with analyses of representative older crust including Paleozoic granitoids which serve as probes of the lower crust in the region. Multiple samples from two representative intrusions are used to address intrapluton initial isotopic heterogeneities and document significant yet restricted variations (<1 in Nd). Overall, Mesozoic granite plutons range in Nd [T] from +4.2 to -2.3, with most +2 to 0, and in initial 87Sr/86Sr from 0.7031 to 0.709. The isotopic variations are roughly inversely correlated but are not obviously related to geologic, geographic, or age differences. Older igneous and metamorphic crust of the region has much lower Nd isotope ratios with the most radiogenic Paleozoic granitoid at Nd [180 Ma] of -2.8. These data suggest mid-Proterozoic separation of the crust in central northern New England. Moreover, the bulk of the Mesozoic granites cannot be explained as crustal melts but must have large mantle components. The ranges of Nd and Sr isotopes are attributed to incorporation of crust by magmas derived from midly depleted mantle sources. Crustal input may reflect either magma mixing of crustal and mantle melts or crustal assimilation which is the favored interpretation. The results indicate production of anorogenic granites from mantle-derived mafic magmas.  相似文献   

15.
Initial 87Sr/86Sr rations were determined for more than 80 plutonic rocks in Japan. The 87Sr/86Sr ratios of gabbroic and granitic rocks show no significant difference in plutonic terranes where both rocks occur closely associated, implying a genetic relationship between them (e.g., Green Tuff belt) or reequilibration at deep level (e.g., Ryoke belt). Wherever granitic rocks occur independently from gabbroic rocks, the granites have higher ratios than the gabbros.Initial 87Sr/86Sr ratios of the granitic rocks are low (<0.706) in Northeast Japan but high (<0.706) in Southwest Japan, the boundary being the Tanakura Tectonic Line. Within Southwest Japan, the ratios are low along the Japan Sea side of the southernmost area. This regional variation is generally correlated with thickness of the continental crust as deduced from the Bouguer anomaly.Initial 87Sr/86Sr ratios of the granitic rocks vary from 0.7037 to 0.7124. The low group (<0.706) is considered to consist of essentially mantle-derived magmas contaminated by crustal material in lesser but varying degree, because of its geological setting and initial 87Sr/86Sr values. The high group may have been formed by contamination of a deep-seated magmas by crustal material or by generation of the main part of the magmas within the continental crust. The ratios of individual belts reflect their own history depending upon age and Rb/Sr ratio of the crustal material.Initial 87Sr/86Sr ratios of granitic rocks are generally low for the magnetite-series but high for the ilmenite-series. Thus, a negative correlation is observed between initial ratios and 34S for most Cretaceous-Paleogene granites. However, Neogene ilmenite-series granites are low in both initial 87Sr/86Sr and 34S indicating interaction of the granitic magma with young sedimentary rocks enriched in 32S.  相似文献   

16.
The calc-alkaline association of the Hercynian Sardinia-CorsicaBatholith consists of multiple coalescent granitoid plutonsand minor gabbroic complexes. Isotopic and trace element dataare presented for selected gabbros and I-type granitoids representativeof the parental mantle- and crust-derived magmas, respectively.The gabbros belong to normal calc-alkaline suites and have markedrelative enrichments in Rb, Ba, K and Pb in primitive mantle-normalizedtrace element diagrams. The granitoids belong to high-K calc-alkalinesuites and have fairly uniform trace element compositions resemblingvolcanic arc granitoids (VAG). A significant overlap in Sr andNd isotope compositions is observed between gabbros and granitoids. Geochemical and isotopic data provide evidence for the originof the gabbros from mantle sources enriched in incompatibletrace elements through recycling of sediments via subductionzones, whereas the granitoids were derived from crustal sourcescomposed mainly of igneous protoliths with relatively homogeneouscomposition. Sr and Nd isotope compositions of gabbros and granitoidsare consistent with both the mantle enrichment process and theformation of the igneous crustal sources occurring at 450 Ma,during the earlier calc-alkaline igneous activity. The connection between Hercynian and Ordovician igneous activityhas important and new implications for the Palaeozoic evolutionof the Sardinia and Corsica lithosphere, and permits the Hercynianorogeny to be placed in a wider geodynamic setting, consistingof three main phases. The Ordovician precollisional phase wascharacterized by a N-NE-dipping subduction of an oceanic plateunder a continental plate with emplacement of acid and subordinatebasic-intermediate volcanic and intrusive rocks. The subcontinentalmantle underneath Sardinia and Corsica experienced enrichmentin incompatible trace elements through recycling of sediments.Major crustal accretion also occurred with underplating of basalticmagmas. The Devonian collisional phase was characterized bythe collision of two continental plates after the total consumptionof the oceanic plate. Crustal thickening processes took placetogether with regional metamorphic events that recorded a clockwiseP-T-t path. The Carboniferous post-collisional phase was characterizedby isostatic and thermal readjustments following crustal thickeningthat caused extensive partial melting. Large quantities of I-typegranitoids and subordinate gabbroic complexes were emplacedin the middle-upper crust and formed the mainframe of the Sardinia-CorsicaBatholith. This geodynamic model is consistent with the Palaeozoic evolutionof other sectors of Western Europe suggested on the basis ofgeological, geochronological and palaeomagnetic data. The palaeomagneticrestoration of the Late Palaeozoic position of Sardinia andCorsica close to Southern France suggests that Sardinia andCorsica could have been portions of the southern edge of theArmorican plate that, during Siluro-Devonian, collided withthe Ibero-Aquitanian plate after the total consumption of theLate Cambro-Ordovician South Armorican and/or Massif CentralOcean. KEY WORDS: crustal growth; Hercynian orogeny; mantle enrichment; radiogenic isotopes; Sardinia-Corsica Batholith *Corresponding author. Present address Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Piazzale Delle Cascine i6, 50144 Firenze, Italy  相似文献   

17.
This paper reports Rb–Sr and Sm–Nd isotope data on the gabbro–diorite–tonalite rock association of the Reft massif (eastern margin of the Middle Urals) and Lu–Hf isotope data on zircon populations from these rocks. In terms of Nd and Hf isotope composition, the rocks of the studied association are subdivided into two distinctly different groups. The first group consists of gabbros and diorites, as well as plagioclase granites from thin dikes and veins cutting across the gabbros. In terms of 43Nd/144Nd i = 0.512518–0.512573 (εNd(T) = +8.6...+9.7) and 176Hf/177Hf i = 0.282961–0.283019 (εHf(T) = +15.9...+17.9), these rocks are practically identical to depleted mantle. Their Nd and Hf model ages show wide variations, but in general are close to their crystallization time. The second group is represented by tonalites and quartz diorites, which compose a large body occupying over half of the massif area. These rocks are characterized by the lower values of 143Nd/144Nd i = 0.512265–0.512388 (εNd(T) = +3.7...+6.0) and 176Hf/177Hf i = 0.282826–0.282870 (εHf(T) = +11.1...+12.7). The TDM values of the second group are much (two–three times) higher than their geological age (crystallization time), which indicates sufficiently long crustal residence time of their source. The initial 87Sr/86Sr in the rocks of both the groups varies from 0.70348 to 0.70495. This is likely explained by the different saturation of melts with fluid enriched in radiogenic Sr. The source of this fluid could be seawater that was buried in a subduction zone with oceanic sediments and released during slab dehydration. Obtained data make it possible to conclude that the formation of the studied gabbro–diorite–tonalite association is a result of spatially and temporally close magma formation processes in the crust and mantle, with insignificant contribution of differentiation of mantle basite magma.  相似文献   

18.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


19.
Strontium and Nd isotopic compositions and trace element abundances were determined for Cretaceous to late Cenozoic igneous rocks from the Japan Sea side of Southwest Japan in order to investigate the effect of the opening of the Japan Sea on igneous activity. The 87Sr/86Sr ratios for both high and low silica rocks decrease with decreasing age since the middle Miocene, when the opening occurred. Similarly, 143Nd/144Nd values for these rocks increase with decreasing age, and are negatively correlated with 87Sr/86Sr ratios. A two-component mixing process can best account for these isotopic and chemical characteristics. One end-member is likely the subcontinental lithospheric mantle (SCLM) and its derivative mafic to intermediate materials which had ɛNd values of around +3. The other endmember consists of mafic to intermediate rocks with low ɛNd values (e.g., −8), probably located in the lower crust. The mantle upwelling associated with the opening of the Japan Sea did not supply typical MORB or MORB-source materials to the crust, but did provide the heat that caused the melting of lithospheric mantle and lower crust. Received: 29 August 1996 / Accepted: 6 May 1997  相似文献   

20.
1.IntroductionCenozoicvolcanicrockshavebeenfoundinanumberoflocationsbothintheinteriorofandatthemarginsoftheQinghai-Tibetplateau.TheyhavebeenconsideredtObegeneticallyrelatedtOtheplatCsubduchon.Forexample,cafe-alkalinevolcedcrocksoftheLingzizongFormation(60-50Ma)occultingintheGangdisebelttothenorthoftheYarlungZangbosutUrezonehavebeenregardedtoberelatedwiththenorthwardsubduchonoftheboaplateandthecloseoftheNeo--Tethysocean(Wang,1984).StUdiesalsoindicatethattheseCenozoicvolcwhcrocksaredomina…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号