首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Huashan piedmont fault, forming a part of the southern margin of the Weihe graben, is one of the important normal faults that control the subsidence of the intracontinental rift. Developing on the footwall of the fault, the Huashan block has experienced rapid cooling during the Cenozoic, especially since the early-middle Miocene. Mountain exhumation causes and transports a great amount of sediments to the adjacent hanging wall, setting a typical case of mountain-basin coupling system. Studies on active tectonics, historical and paleo earthquakes and field investigations reveal that the middle section(Huaxian-Huayin)of the fault is much more active than the west(Lantian-Huaxian)and east(Huayin-Lingbao)sections.
We extracted channel profiles of rivers that originate from the main water divide of the northern flank of the Huashan Mountain. Based on the method of slope-area analysis and the integral approach, we identified knickpoints, calculated channel concavity and steepness indices, and constructed paleo river profiles. Of most rivers, the concavities are within a relatively narrow range of 0.3~0.6, with no obvious correlation with tectonics. However, channel steepness and knickpoint distribution vary spatially. In the east section, rivers are under steady-state with smooth, concave-up channels and lower steepness((104±30)m0.9). In the other two sections, rivers are mainly under transient state with slope-break knickpoints. For the channel segments below knickpoints, steepness indices are much higher in the middle section((230±92)m0.9)than in the west((152±53)m0.9). Thus, the variance of fault activity can be reflected by channel steepness pattern. Above the knickpoints, channel steepness indices are much lower(middle(103±23)m0.9, west(60±14)m0.9). What's more, we found a statistically significant power-law scaling between knickpoint retreat distance and catchment drainage area. Thus, we attributed these knickpoints to be the results of recent rapid uplift of the Huashan block. The relief of paleo channels(middle(1000±153)m, west(751±170)m)accounts for~60%~80% of the relief of modern rivers(middle(1323±249)m, west(1057±231)m), which means that ~20%~40% of modern channel relief was caused by the episode of the rapid uplift. Assuming a balance between the rates of rock uplift and downstream river incision, a power-law function between uplift rates and channel steepness can be derived. According to the fault throw rates of the middle section 1.5~3mm/a(since late Pleistocene), we constrained slope exponent n~0.5 and channel erodibility K~1.5×10-4m0.55/a. Combining the knickpoint age formula, we estimated that the rapid mountain uplift/fault throw began at ~(0.55±0.25)Ma BP. Therefore, the middle of the Huashan piedmont fault is more active than the west and east sections. The fast fault throw of the west and middle sections since the middle Pleistocene has caused rapid mountain uplift and high topographic relief.  相似文献   

2.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

3.
Fission track analysis of apatites from basement rocks of the Wright Valley in southern Victoria Land provides information about the timing, the amount and hence the rate of uplift of the Transantarctic Mountains in this area. Apatite ages increase systematically with elevation, and a pronounced break in the age versus elevation profile has been recognised at about 800 m on Mt. Doorly near the mouth of Wright Valley. The apatite age of about 50 Ma at this point approximates the time at which uplift of the mountain range began. Samples lying above the break in slope lay within the apatite fission track annealing zone prior to uplift, during a Cretaceous to Early Cenozoic period of relative thermal and tectonic stability. At the lower elevations samples had a zero apatite fission track age before the onset of rapid uplift and have track length distributions indicating rapid cooling. Some 4.8–5.3 km of uplift are estimated to have occurred at an average rate of about 100 ± 5m/Ma since uplift began. From the total stratigraphic thickness known above the uplifted apatite annealing zone it can be estimated that the Late Cretaceous/Early Cenozoic thermal gradient in the area was about 25–30°C/km.The occurrence and pattern of differential uplift across the Transantarctic Mountains can be estimated from the vertical offsets of different apatite fission track age profiles sampled across the range. These show the structure of the mountain range to be that of a large tilt block, dipping gently to the west under the polar ice-cap and bounded by a major fault zone on its eastern side. Offset dolerite sills at Mt. Doorly show the mountain front to be step-faulted by 1000 m or more down to the McMurdo Sound coast from an axis of maximum uplift just inland from Mt. Doorly.  相似文献   

4.
A dataset of 21 study reaches in the Porter and Kowai rivers (eastern side of the South Island), and 13 study reaches in Camp Creek and adjacent catchments (western side of the South Island) was used to examine downstream hydraulic geometry of mountain streams in New Zealand. Streams in the eastern and western regions both exhibit well-developed downstream hydraulic geometry, as indicated by strong correlations between channel top width, bankfull depth, mean velocity, and bankfull discharge. Exponents for the hydraulic geometry relations are similar to average values for rivers worldwide. Factors such as colluvial sediment input to the channels, colluvial processes along the channels, tectonic uplift, and discontinuous bedrock exposure along the channels might be expected to complicate adjustment of channel geometry to downstream increases in discharge. The presence of well-developed downstream hydraulic geometry relations despite these complicating factors is interpreted to indicate that the ratio of hydraulic driving forces to substrate resisting forces is sufficiently large to permit channel adjustment to relatively frequent discharges.  相似文献   

5.
通过对阿尔金断裂带西段莫勒切河河口附近卫星影像解译、野外调查测量及地貌面样品年龄测定,利用宽谷阶地、堆积阶地获取构造隆升速率、构造变形方式及加积速率,并结合区域气候资料探讨该区阶地发育对气候变化的响应.莫勒切河出山口发育4级阶地(T<‘4>,T<‘3>,T<‘2>,T<‘1>),其中T<‘4>、T<‘3>为宽谷阶地,T...  相似文献   

6.
华北山地的水系变迁与新构造运动   总被引:4,自引:0,他引:4  
华北山地的水系在第四纪有过重大变迁。其变过时段主要发生在早更新世早期和晚更新世早期,其次是早全新世和晚全新世。变迁方式主要是河流自下游面上游的溯源侵蚀袭夺,且袭夺点逐渐向下游移动;其次是断陷盆地的阻隔与诱导。变迁方向多是东西向河道袭夺南北向河道,使河流向东改道。目前许多河流仍处在进一步袭夺中,从而可看出,华北山地的水纱变迁严格受新构造运动控制,且以断块差异活动为主,水系变迁方向可能与青藏高原在第四纪强烈隆起和太行山,燕山在第四纪迅速抬升有关。  相似文献   

7.
利用深部地球物理结果与浅部地质调查结果进行对比,并基于DEM的地貌分析,研究了中更新世以来北天山向北扩展的造山过程.中更新世以来,北天山地壳中存在南倾的低角度滑脱面,滑脱面之上,逆断裂和褶皱带组成的山前活动构造带整体向北滑脱并缩短变形.中更新世早期,气候暖湿,基岩山脉剥蚀强烈,在山前形成了大规模的洪泛平原.中更新世中期以来,持续的构造活动一方面使山前盆地卷入变形,另一方面使盆地遭受分隔,天山北麓地壳以阶梯式的形式自南向北逐步抬升.中更新世中期约600 ka以来,气候越来越干旱,山前盆地地表仅遭受了轻微剥蚀,地壳抬升全部转换为自南向北的地表隆起,隆起的北部向天山靠拢,隆起的南部逐渐成为山系,与天山相连,北天山得以向北扩展.中更新世以来的掀斜隆起造成山麓至盆地高差达1000多米的坡面,为30 ka以来的河流下切提供了坡度条件,造成了深达300多米的河流强烈下切.  相似文献   

8.
Dividing rivers into homogeneous reaches is key for river processes and watershed management. In contrast to downstream fluvially dominated rivers, upstream debris-flow dominated torrents have steeper channel slopes and smaller valley width/depth ratios. Investigating transition reaches between torrents and fluvially dominated rivers, not only explores the structure of the landscape, but also contributes to hazard management. This study proposed a valley morphology index combining two variables, channel slope and valley width/depth ratio, to determine transition reaches between torrents and rivers. The methodology was applied to 41 mountain streams in Taiwan using a Geographic Information System (GIS)-based topographic analysis. Plots of valley width/depth ratio versus channel slope were used to determine boundary values of the valley morphology index (Iv) separating torrents from rivers. The plots showed that about 80% of the river basins present “L-shaped” curves, which indicate sharp decreases in slope for upstream sections and dramatic increases of valley width/depth ratio for downstream sections. Results further demonstrated an average value of Iv 0.0047 across the study sites. Spatial comparison between geographic regions indicated that transition reaches in eastern rivers tend to occur lower in the drainage basin due, in part, to higher terrain. Local factors, such as tributary confluences and landslides promote the transition from torrents to fluvially dominated rivers. Satellite images verified that the approach correctly identified transition reaches, suggesting that it may provide a useful reference for river management.  相似文献   

9.
G. Kaless  L. Mao  M. A. Lenzi 《水文研究》2014,28(4):2348-2360
Downstream hydraulic geometry relationships describe the shape of alluvial channels in terms of bankfull width, flow depth, flow velocity, and channel slope. Recent investigations have stressed the difference in spatial scales associated with these variables and thus the time span required for their adjustment after a disturbance. The aim of this study is to explore the consequences in regime models considering the hypothesis that while channel width and depth adjust quickly to changes in water and sediment supply, reach slope requires a longer time span. Three theoretical models were applied. One model incorporates an extremal hypothesis (Millar RG. 2005. Theoretical regime equations for mobile gravel‐bed rivers with stable banks. Geomorphology 64 : 207–220), and the other two are fully physically based (Ikeda S, Parker G, Kimura Y. 1988. Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research 24 : 713–722; Parker G, Wilcock PR, Paola C, Dietrich W, Pitlick J. 2007. Physical basis for quasi universal relations describing bankfull hydraulic geometry of single‐thread gravel‐bed rivers. Journal of Geophysical Research 112 , DOI: 10.1029/2006JF000549). In order to evaluate the performance of models introducing the slope as an independent variable, we propose two modifications to previous models. The performance of regime models was tested against published data from 142 river reaches and new hydraulic geometry data from gravel‐bed rivers in Patagonia (Argentina) and north‐eastern Italy. Models that assume slope as a control (Ikeda et al., 1988; or Millar, 2005) predict channel depth and width reasonably well. Parker et al.'s (2007) model improved predictions because it filters the scatter in slope data with a relation slope–discharge. The extremal hypothesis model of Millar (2005) predicts comparably to the other physically based models. Millar's model was chosen to describe the recent changes in the Piave and Brenta rivers due to human intervention – mainly in‐channel gravel mining. The change in sediment supply and recovery was estimated for these rivers. This study supports the interpretation that sediment supply is the key factor guiding morphological changes in these rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
SOMEAPPROACHESFORSTUDYINGTHEINTENSITYOFSMALLRIVERAGGRADATIONV.N.Golosov(LaboratoryofSoilandFluvialProcesses,FacultyofGeograph...  相似文献   

11.
IMOUNTAINE~ON-MENTSANDSEDIMENTGeologistsandgeomorphologistsareabletomakeatleasttWoimportantcontributionstomitigatinghazardsassociatedwithsedimentprocessessuchasfloodsordebrisflows.First,geomorphologistscaninterpretgeologicrecordsofthehiStoryofseddrientprocesses.Theserecordsmayprovideinsightintothemagnitude,frequency,andlocationofsedimentsourcesandtransport,aswellashillslopeandchannelresponsestosedimentprocesses.Informationonpastsedimentproductionandmovement,andchannelresponse,mayb'…  相似文献   

12.
现代的天山山脉是在古生代造山基础上,于新生代强烈抬升而形成.其新生代造山和隆升过程,造就了现今的天山地貌格局.本文选取西南天山作为研究区域,采用河床砂岩屑裂变径迹测年分析,从统计角度限定西南天山的隆升-剥露过程.样品采集于特克斯河支流阿克雅孜河、夏特河、木扎河以及特克斯河干流的沉积河床.磷灰石裂变径迹测试和统计分析表明,存在代表源区热史演化不同阶段的年龄峰值.尽管不同样品的年龄众数分布有少许差别,颗粒年龄众数的去褶积分析获得了西南天山山体新生代冷却的三个基本一致的阶段:6~8 Ma,12~19 Ma以及32~40 Ma.结合山脉隆起的地质地貌模型,无论是整体抬升或掀斜抬升,以及压扭性背景的花状挤出抬升,根据磷灰石裂变径迹封闭温度推断的抬升量与现今天山高度基本相当的事实,都可以确认西南天山山体是6~8 Ma以来形成的.天山这三期快速抬升冷却事件与青藏高原及其周边的主要隆升时期有较好的对应,证明了天山隆升和印度-欧亚板块碰撞远程效应的关系.另外,6~8 Ma的冷却事件与沉积地层学研究揭示的6 Ma左右的气候显著变化相互印证,显示了研究区域山脉隆升和气候变化之间存在的密切关系.  相似文献   

13.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Gravel-bed rivers characteristically exhibit shallow riffles in wide sections and deeper pools where the channel becomes constricted and narrow. While rivers can adjust to changing flow and sediment supply through some combination of adjustments of channel slope, bed-surface sorting, and channel shape, the degree to which riffle-pools may adopt these changes in response to changing flows and sediment supplies remains unclear. This article presents results from a flume experiment investigating how constant- and variable-width channels adjust their morphology in response to changing flow and increased sediment supply. Two flume geometries were used: (1) constant-width and (2) variable-width, characterized by a sinusoidal pattern with a mean width equal to that of the first channel. The variable-width channel developed bed undulations in phase with the width, representing riffle-pools. The experiment consisted of three phases for each flume geometry: (1) steady flow, constant sediment supply; (2) unsteady flow, constant sediment supply; and (3) unsteady flow, doubled sediment supply. Unsteady flow was implemented in the form of repeated symmetrical stepped hydrographs, with a mean discharge equal to that in the steady flow phase. In all phases the bed and sediment supply were composed of a sand/gravel mixture ranging from 1 to 8 mm. In both the straight and variable-width channels, transitioning from steady flow to repeated hydrographs did not result in significant changes in bed morphology. The two channel geometries had different responses to increased sediment supply: the slope of the straight channel increased nearly 40%, while the variable-width channel reduced the relief between bars and pools and decreased the variability in cross-sectional elevation with a slight slope increase. Bar-pool relief varied with repeat discharge hydrographs. Pool elevation changed twice the distance of bar elevations, emphasizing the relevance of pool scour for riffle-pool self-maintenance in channels with width variations.  相似文献   

15.
We present a new numerical surface process model allowing us to take into account submarine erosion processes due either to submarine landslides or to hyperpycnal currents. A first set of models show that the frequency of hyperpycnal flows influences the development of submarine canyons at the mouth of continental rivers. Further experiments show that an increase in submarine slope leads to faster regressive canyon erosion and a more dentritic canyon network, whereas increasing the height of the unstable sediment pile located on the shelf break leads to wider and less dendritic canyons. The models are then applied to the western segment of the north Ligurian margin (northwestern Mediterranean), which displays numerous submarine canyons with various sizes and morphologies. From west to east, canyon longitudinal profiles as well as margin‐perpendicular profiles progressively change from moderately steep, concave‐up shapes to steeper linear to convex‐up shapes suggesting increasing eastward margin uplift. Moreover, the foot of the margin is affected by a marked slope increase with evidences of mass transport due to landslides. Numerical models which reproduce well the North Ligurian margin morphologic features indicate that the western part of the margin is submitted to rather low (i.e. 0.4 mm yr?1) uplift and intense submarine erosion due to frequent hyperpycnal currents, whereas the eastern part bears more rapid (i.e. 0.7 mm yr?1) uplift and has little or no hyperpycnal currents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
During the Late Cretaceous, western North America was characterized by a close geographic association between the Sevier highlands and the Western Interior Seaway. In this paper, an atmospheric general circulation model (AGCM) is used to simulate the impact of this geographic association on surface pressure, wind direction, and precipitation, and it is predicted that seasonal changes in these variables resulted in a strong monsoon along the eastern flank of the Sevier Highlands. Confirmation that these model simulations are accurate is provided by isotopic data from foreland basin sediments. In particular oxygen isotope records from different environments (large rivers, small streams and ponds) and proxies (unionid bivalve shells and paleosol carbonates) indicate that foreland basin streams were recharged by local precipitation with high oxygen isotope ratios while large trunk rivers were recharged by high-elevation precipitation. This hydrologic pattern is observed from Alberta to Utah and is consistent with east to west monsoonal air mass movements and associated seasonal rainfall. Recognition of a highland-driven monsoon has implication in regard to studies of fossil taphonomy, of water vapor transport, and of links between climate and mountain uplift and exhumation in this region.  相似文献   

17.
Long‐term aggradation of the Waiho River, South Westland, New Zealand, has now raised the head of its alluvial fan to unprecedented elevations. In its natural state the river would, like all other major rivers in the area, be somewhat incised into its fanhead. The only relevant factor able to account for the aggradation is the presence of control banks (‘stopbanks’ in local parlance) that restrict the ability of the river to move over the whole of its natural fanhead. A 1 : 3333 scale physical hydraulic model (a ‘microscale’ model) was used to study this situation. An alluvial fan was generated in the model and allowed to develop to equilibrium with steady inputs of water and sediment within boundaries geometrically similar to those of the natural unrestricted Waiho River. The boundaries were then altered to represent the presence of the stopbanks, and the fan allowed to continue evolving under the same water and sediment inputs. The model fanhead aggraded in a spatial pattern similar to that recorded on the Waiho. Taking into consideration the limitations of microscale modelling, these results indicate that the aggradation in the Waiho is a result of the lateral restriction of the river by stopbanks. This poses fundamental questions about the variables that control the behaviour of alluvial fans. The results also suggest that microscale modelling can be used to make reliable quantitative predictions of the effects of engineering works on rivers, in spite of the low level of dynamic similarity with the prototype compared to that in larger‐scale models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Landscape adjustment to tectonic, lithologic and climatic forcing leads to drainage reorganization and migration of divides. The respective contribution of these forcings, especially on carbonate landscapes is not well defined. Here, we have addressed this issue by combining field observations, satellite image interpretation and digital elevation model (DEM) quantitative analysis to assess drainage response to spatially heterogeneous rainfall, asymmetric uplift, and normal faulting on an emerging carbonated platform (Sumba Island, Indonesia). We map geomorphic markers of fluvial dynamics and drainage rearrangement and compute a χ parameter that incorporates the contributions of unevenly distributed precipitation and asymmetric uplift to estimate erosional disequilibrium across drainage divides. We find that asymmetric emergence of Sumba Island created an initial parallel drainage, asymmetric across a divide that propagates landwards. Soon after establishing itself on the emerging slopes this drainage was disturbed by normal faulting, which has become the main force driving drainage rearrangement. Vertical offsets across normal fault scarps first triggered aggradation within valleys over the hanging walls, and then disconnected upstream reaches from downstream reaches, leading to the formation of wind gaps atop the fault scarps and upstream perched sedimentary basins. The defeat of rivers by growing fault scarps was catalysed by the possibility for surface water to be rerouted near the fault scarps into underground water networks inside the underlying carbonates. At the end of the process, the opposite drainage across the main water divide captured the struggling drainage. Capture mechanisms include initial groundwater capture of the perched alluvial aquifers, followed by ground sapping at the head of the opposite drainage and surface stream diversion by avulsion. Finally, normal faulting is the main driving force of drainage rearrangement allowing avulsion and karstic rerouting whereas asymmetric uplift and climate forcings have shown a low efficiency. The role of karstification is more ambiguous, catalysing or inhibiting drainage rearrangement. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
An integral approach to bedrock river profile analysis   总被引:5,自引:0,他引:5  
Bedrock river profiles are often interpreted with the aid of slope–area analysis, but noisy topographic data make such interpretations challenging. We present an alternative approach based on an integration of the steady‐state form of the stream power equation. The main component of this approach is a transformation of the horizontal coordinate that converts a steady‐state river profile into a straight line with a slope that is simply related to the ratio of the uplift rate to the erodibility. The transformed profiles, called chi plots, have other useful properties, including co‐linearity of steady‐state tributaries with their main stem and the ease of identifying transient erosional signals. We illustrate these applications with analyses of river profiles extracted from digital topographic datasets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava damming. Four Middle Pleistocene lava flows (40Ar/39Ar‐ dated from 310 to 175 ka) filled and dammed the Gediz River at the Gediz–Geren confluence, resulting in base‐level fluctuations of the otherwise uplift‐driven incising river. Field reconstruction and luminescence dating suggest fluvial terraces in the Geren Catchment are capped by Middle Pleistocene aggradational fills. This showed that incision of the Geren trunk stream has been delayed until the end of MIS 5. Subsequently, the catchment has responded to base‐level lowering since MIS 4 by 30 m of stepped net incision. Field reconstruction left us with uncertainty on the main drivers of terrace formation. Therefore, we used landscape evolution modelling to investigate catchment response to three scenarios of base‐level change: (i) uplift with climate change (rainfall and vegetation based on arboreal pollen); (ii) uplift, climate change and short‐lived damming events; (iii) uplift, climate and long‐lived damming events. Outputs were evaluated for erosion–aggradation evolution in trunk streams at two different distances from the catchment outlet. Climate influences erosion–aggradation activity in the catchment, although internal feedbacks influence timing and magnitude. Furthermore, lava damming events partly control if and where these climate‐driven aggradations occur. Damming thus leaves a legacy on current landscape evolution. Catchment response to long‐duration damming events corresponds best with field reconstruction and dating. The combination of climate and base level explains a significant part of the landscape evolution history of the Geren Catchment. By combining model results with fieldwork, additional conclusions on landscape evolution could be drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号