首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using field survey data from the sixth forest inventory of Jiangxi Province in 2003, the biomass and carbon storage for three studied species (Pinus massoniana, Cunninghamia lanceolata, and Pinus elliottii) were estimated in Taihe and Xingguo counties of Boyang Lake Basin, Jiangxi Province, China. The relationship between carbon density and forest age was analyzed by logistic equations. Spatio-temporal dynamics of forest biomass and carbon storage in 1985-2003 were also described. The results show that total stand area of the three forest species was 3.10 × 10^5 ha, total biomass 22.20 Tg, vegetation carbon storage 13.07 Tg C, and average carbon density 42.36 Mg C/ha in the study area in 2003. Carbon storage by forest type in descending order was: P. massoniana, C. lanceolata and P. elliottii. Carbon storage by forest age group in descending order was: middle stand, young stand, near-mature stand and mature stand. Carbon storage by plantation forests was 1.89 times higher than that by natural forests. Carbon density of the three species increased 8.58 Mg C/ha during the study period. The carbon density of Taihe County was higher in the east and west, and lower in the middle. The carbon density of Xingguo County was higher in the northeast and lower in the middle. In general, the carbon density increased with altitude and gradient. Afforestation projects contribute significantly to increasing stand area and carbon storage. Appropriate forest management may improve the carbon sequestration capacity of forest ecosystems.  相似文献   

2.
Biomass carbon sequestration by planted forests in China   总被引:2,自引:1,他引:1  
The planted forest area and carbon sequestration have increased significantly in China, because of large-scale reforestation and afforestation in the past decades. In this study, we developed an age-based volume-to-biomass method to estimate the carbon storage by planted forests in China in the period of 1973–2003 based on the data from 1209 field plots and national forest inventories. The results show that the total carbon storage of planted forests was 0.7743 Pg C in 1999–2003, increased by 3.08 times since the early 1970s. The carbon density of planted forests varied from 10.6594 Mg/ha to 23.9760 Mg/ha and increased by 13.3166 Mg/ha from 1973–1976 to 1999–2003. Since the early 1970s, the planted forests in China have been always a carbon sink, and the annual rate of carbon sequestration was 0.0217 Pg C/yr. The carbon storage and densities of planted forests varied greatly in space and time. The carbon storage of Middle South China was in the lead in all regions, which accounted for 23%–36% of national carbon storage. While higher C densities (from 17.79 Mg/ha to 26.05 Mg/ha) were usually found in Northeast China. The planted forests in China potentially have a high carbon sequestration since a large part of them are becoming mature and afforestation continues to grow.  相似文献   

3.
The effects of reforestation on carbon(C) sequestration in China′s Loess Plateau ecosystem have attracted much research attention in recent years. Black locust trees(Robinia pseudoacacia L.) are valued for their important use in reforestation and water and soil conservation efforts. This forest type is widespread across the Loess Plateau, and must be an essential component of any planning for C sequestration efforts in this fragile ecological region. The long-term effects of stand age on C accumulation and allocation after reforestation remains uncertain. We examined an age-sequence of black locust forest(5, 9, 20, 30, 38, and 56 yr since planting) on the Loess Plateau to evaluate C accumulation and allocation in plants(trees, shrubs, herbages, and leaf litter) and soil(0–100 cm). Allometric equations were developed for estimating the biomass of tree components(leaf, branch, stem without bark, bark and root) with a destructive sampling method. Our results demonstrated that black locust forest ecosystem accumulated C constantly, from 31.42 Mg C/ ha(1 Mg = 10~6 g) at 5 yr to 79.44 Mg C/ha at 38 yr. At the ′old forest′ stage(38 to 56 yr), the amount of C in plant biomass significantly decreased(from 45.32 to 34.52 Mg C/ha) due to the high mortality of trees. However, old forest was able to accumulate C continuously in soil(from 33.66 to 41.00 Mg C/ha). The C in shrub biomass increased with stand age, while the C stock in the herbage layer and leaf litter was age-independent. Reforestation resulted in C re-allocation in the forest soil. The topsoil(0–20 cm) C stock increased constantly with stand age. However, C storage in sub-top soil, in the 20–30, 30–50, 50–100, and 20–100 cm layers, was age-independent. These results suggest that succession, as a temporal factor, plays a key role in C accumulation and re-allocation in black locust forests and also in regional C dynamics in vegetation.  相似文献   

4.
Land use change is one of the major factors that affect soil organic carbon(SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar(Populus tomentosa) and korshinsk peashrub(Caragana korshinskii) in three climate regions(Chifeng City, Fengning City and Datong City of the ′Beijing-Tianjin Sandstorm Source Control′(BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0–100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%–111% and 15%–59% for P. tomentosa and 9%–63% and 0–73% for C. korshinskii in the 0–20 cm and 20–100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.  相似文献   

5.
Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass density and age of planted forests in different regions of the country. Combined with the plantation area in the first-stage of the Natural Forest Protection(NFP) program(1998–2010), this study calculated the biomass carbon storage of the afforestation in the first-stage of the program. On this basis, the carbon sequestration potential of these forests was estimated for the second stage of the program(2011–2020). Biomass carbon storage of plantation established in the first stage of the program was 33.67 Tg C, which was majority accounted by protection forests(30.26 Tg C). There was a significant difference among carbon storage in different regions, which depended on the relationship of biomass carbon density, forest age and plantation area. Under the natural growth, the carbon storage was forecasted to increase annually from 2011 to 2020, reaching 96.03 Tg C at the end of the second-stage of the program in 2020. The annual growth of the carbon storage was forecasted to be 6.24 Tg C/yr, which suggested that NFP program has a significant potential for enhancing carbon sequestration in plantation forests under its domain.  相似文献   

6.
Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO_2 emissions. However, experimental evidence for C sequestration potential(C_(sp)) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore C_(sp). The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the C_(sp) of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher C_(sp) may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO2 emissions. However, experimental evidence for C sequestration potential(Csp) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore Csp. The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the Csp of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher Csp may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.  相似文献   

7.
Marine macroalgae can absorb carbon and play an important role in carbon sequestration. As an important economic macroalga, Gracilariopsis lemaneiformis has the potential to significantly affect carbon absorption and storage in wave-sheltered intertidal reef systems. However, detailed knowledge on seasonal biomass changes and carbon storage of G. lemaneiformis is lacking, especially in many small and scattered ecosystems. Considering the influence of human activities on wild distribution of G. lemaneiformis, the understanding of seasonal dynamics of an economically important species in nature is necessary. In this study, we first investigated seasonal variations in biomass, coverage area, and carbon storage during low tide from August 2011 to July 2012 in Zhanshan Bay, Qingdao, China. Furthermore, we estimated the carbon storage potential of wild G. lemaneiformis using light use efficiency(LUE). The results show that the standing biomass and coverage area changed significantly with season. However, seasonal variations in carbon content and water content were not obvious, with an average content of 35.1% and 83.64%, respectively. Moreover, carbon storage in individual months varied between 0.67 and 47.03 g C/m 2, and the value of carbon storage was the highest in August and June and the lowest in February. In Zhanshan Bay, LUE of G. lemaneiformis was only 0.23%. If it is increased to the theoretical maximum(5%–6%), the carbon storage will have an increase of at least 21 times compared with the current, which suggested that carbon storage of wild G. lemaneiformis had a high enhancement potential. The study will help to assess a potential role of G. lemaneiformis in reducing atmospheric CO2.  相似文献   

8.
Three-North Shelterbelt Forest(TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region is important for understanding the overall function of carbon sequestration of the forest and other terrestrial ecosystems in China. This study investigated the distribution area of shrubland in the TSF region based on remote sensing images in 1978 and 2008, and calculated the carbon density of shrubland in combination with the field investigation and previous data from published papers. The carbon sequestration quantity and rate from 1978 to 2008 was analyzed for four sub-regions and different types of shrubs in the TSF region. The results revealed that: 1) The area of shrubland in the study area and its four sub-regions increased during the past thirty years. The area of shrubland for the whole region in 2008 was 1.2 × 10~7 ha, 72.8% larger than that in 1978. The Inner Mongolia-Xinjiang Sub-region was the largest shrubland distribution area, while the highest coverage rate was found in the North China Sub-region. 2) In decreasing order of their carbon sequestration, the four types of shrubs considered in this study were Hippophae rhamnoides, Caragana spp., Haloxylon ammodendron and Vitex negundo var. heterophylla. The carbon sequestration of H. rhamnoides, with a maximum mean carbon density of 16.5 Mg C/ha, was significantly higher than that of the other three species. 3) The total carbon sequestration of shrubland in the study region was 4.5×10~7 Mg C with a mean annual carbon sequestration of 1.5 ×10~6 Mg C. The carbon density in the four sub-regions decreased in the following order: the Loess Plateau Sub-region, the North China Sub-region, the Northeast China Sub-region and the Inner Mongolia-Xinjiang Sub-region. The paucity of studies and data availability on the large-scale carbon sequestration of shrub species suggests this study provides a baseline reference for future research in this area.  相似文献   

9.
Páramo is a term used to describe tropical alpine vegetation between the continuous timberline and the snow line in the Northern Andes. Páramo environments provide important species habitat and ecosystem services. Changes in spatial extent of the páramo ecosystem at Pambamarca in the Central Cordillera of the northern Ecuadorian Andes were analysed using multi-temporal Landsat TM/ETM+ satellite data. The region suffered a loss of 1826.6 ha or 20% of the total area at a rate of 100 ha/annum during 1988-2007 period. It is found that permanent páramo cover decreased from 8350 ha in 1988 to 5864 ha in 2007 at a fairly constant rate(R2=0.94). This loss is attributed to expansion of commercial agriculture and floriculture in the valleys coupled with increased population pressure. Land at higher elevations has been cleared for small scale agriculture. Loss of the páramo ecosystem will exert a number of negative impacts on ecosystem services and livelihoods of the local population at Pambamarca.  相似文献   

10.
The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.  相似文献   

11.
【Title】

【Author】

【Addresses】1

The tree root distribution pattern and biomass of seventeen year old trees of Grewia optiva, Morus alba, Celtis australis, Bauhinia variegata and Robinia pseudoacacia were studied by excavation method. B. variegata roots penetrated to a maximum depth of 4.78 m, whereas, M. alba roots were found down to 1.48 m depth. Lateral spread was minimum in B. variegata (1.10 m)and maximum inR. pseudoacacia (7.33 m). Maximum root biomass of 6.30 kg was found in R. pseudoacacia and minimum (2.43 kg) was found in M. alba. For four species viz.,G. optiva, M. alba, C. australis andR. pseudoacacia, 68%-87% root biomass occurred within top 0-30 cm soil depth, but forB. variegata this was only45%. The soil binding factor was maximum in G. optiva and minimum in B. variegata. Soil physico-chemical properties also showed wide variation. The study suggests thatB. variegata with a deep root system is the most suitable species for plantation under agroforestry systems. R. pseudoacacia and G. optiva with deep root systems, more lateral spread and high soil binding factor are suitable for plantation on degraded lands for soil conservation.  相似文献   

12.
Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L.(alfalfa) grassland biomass carbon and soil organic carbon density(SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period(viz. 0–10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0–10 year. During 0–30 year, the SOCD from 0–100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62 ± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for 10 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.  相似文献   

13.
The raising concentration of atmospheric CO_2 resulted in global warming. The forest ecosystem in Tibet played an irreplaceable role in maintaining global carbon balance and mitigating climate change for its abundant original forest resources with powerful action of carbon sink. In the present study, the samples of soil and vegetation were collected at a total of 137 sites from 2001 to 2018 in Tibet. Based on the field survey of Tibet's forest resources and 8~(th) forest inventory data, we estimated the carbon storage and carbon density of forest vegetation(tree layer, shrub, grass, litter and dead wood) and soil(0-50 cm) in Tibet. Geostatistical methods combined with Kriging spatial interpolation and Moran's I were applied to reveal their spatial distribution patterns and variation characteristics. The carbon density of forest vegetation and soil in Tibet were 74.57 t ha~(-1) and 96.24 t ha~(-1), respectively. The carbon storage of forest vegetation and soil in Tibet were 344.35 Tg C and 440.53 Tg C, respectively. Carbon density of fir(Abies forest) was 144.80 t ha~(-1) with the highest value among all the forest types. Carbon storage of spruce(Picea forest) was the highest with 99.09 Tg C compared with other forest types. The carbon density of fir forest and spruce forest both increased with the rising temperature and precipitation. Temperature was the main influential factor. The spatial distribution of carbon density of forest vegetation, soil, and ecosystem in Tibet generally showed declining trends from western Tibet to eastern Tibet. Our results facilitated the understanding of the carbon sequestration role of forest ecosystem in the Tibet. It also implied that as the carbon storage potential of Tibet's forests are expected to increase, these forests are likely to serve as huge carbon sinks in the current era of global warming and climate change.  相似文献   

14.
European larch (Larix decidua) forests of the western Alps form extensive cultural landscapes whose resilience to global changes is currently unknown. Resilience describes the capacity of ecological systems to maintain the same state, i.e., the same function, processes, structure, and composition despite disturbances, environmental changes and internal fluctuations. Our aim is to explore the resilience of larch forests to changes in climate and land use in the western Italian Alps. To do so, we examined whether larch forests can be described as an alternative stable state in mountain forest ecosystems. We used tree basal area data obtained from field forest inventories in combination with topography, forest structure, land use, and climate information. We applied three different probabilistic methods: frequency distributions, logistic regressions, and potential analyses to infer the resilience of larch forests relative to that of other forest types. We found patters indicative of alternative stable states: bimodality in the frequency distribution of the percent of larch basal area, and the presence of an unstable state, i.e., mixed larch forests, in the potential analyses. We also found: (1) high frequency of pure larch forests at high elevation, (2) the probability of pure larch forests increased mostly with elevation, and (3) pure larch forests were a stable state in the upper montane and subalpine belts. Our study shows that the resilience of larch forests may increase with elevation, most likely due to the altitudinal effect on climate. Under the same climate conditions, land use seems to be the main factor governing the dominance of larch forests. In fact, subalpine larch forests may be more resilient, and natural succession after land abandonment, e.g., towards Pinus cembra forests, seems slower than in montane larch forests. In contrast, in the upper montane belt only intense land use regimes characterized by open canopies and forest grazing may maintain larch forests. We conclude that similar approaches could be applied in other forest ecosystems to infer the resilience of tree species.  相似文献   

15.
Carbon sequestration occurs when cultivated soils are re-vegetated. In the hilly area of the Loess Plateau, China, black locust(Robinia pseudoacacia) plantation forest and grassland were the two main vegetation types used to mitigate soil and water loss after cultivation abandonment. The purpose of this study was to compare the soil carbon stock and flux of these two types of vegetation which restored for 25 years. The experiment was conducted in Yangjuangou catchment in Yan′an City, Shaanxi Province, China. Two adjacent slopes were chosen for this study. Six sample sites were spaced every 35–45 m from summit to toe slope along the hill slope, and each sample site contained three sampling plots. Soil organic carbon and related physicochemical properties in the surface soil layer(0–10 cm and 10–20 cm) were measured based on soil sampling and laboratory analysis, and the soil carbon dioxide(CO2) emissions and environmental factors were measured in the same sample sites simultaneously. Results indicated that in general, a higher soil carbon stock was found in the black locust plantation forest than that in grassland throughout the hill slope. Meanwhile, significant differences in the soil carbon stock were observed between these two vegetation types in the upper slope at soil depth 0–10 cm and lower slope at soil depth 10–20 cm. The average daily values of the soil CO2 emissions were 1.27 μmol/(m2·s) and 1.39 μmol/(m2·s) for forest and grassland, respectively. The soil carbon flux in forest covered areas was higher in spring and less variation was detected between different seasons, while the highest carbon flux was found in grassland in summer, which was about three times higher than that in autumn and spring. From the carbon sequestration point of view, black locust plantation forest on hill slopes might be better than grassland because of a higher soil carbon stock and lower carbon flux.  相似文献   

16.
During the 15th Conference of the Parties(COP 15),Parties agreed that reducing emissions from deforestation and forest degradation and enhancing ’removals of greenhouse gas emission by forests’(REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change(UNFCCC) was capable of dealing with global emissions.As REDD+ seeks to lower emissions by stopping deforestation and forest degradation with an international payment tier according to baseline scenarios,opportunities for ecosystem benefits such as slowing habitat fragmentation,conservation of forest biodiversity,soil conservation may be also part of this effort.The primary objective of this study is to evaluate ecosystem-based benefits of REDD+,and to identify the relationships with carbon stock changes.To achieve this goal,high resolution satellite images are combined with Normalized Difference Vegetation Index(NDVI) to identify historical deforestation in study area of Central Kalimantan,Indonesia.The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 × 10 5 t CO 2 and 1.47 × 10 6 t CO 2 respectively,showing an increasing trend in recent years.Dring 2005-2009,number of patches(NP),patch density(PD),mean shape index distribution(SHAPE_MN) increased 30.8%,30.7% and 7.6%.Meanwhile,largest patch index(LPI),mean area(AREA_MN),area-weighted mean of shape index distribution(SHAPE_AM),neighbor distance(ENN_MN) and interspersion and juxtaposition index(IJI) decreased by 55.3%,29.7%,15.8%,53.4% and 21.5% respectively.The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 × 10 3 ha corresponding to 96.0% of the changing forest.These results support the view that there are strong synergies among carbon loss,forest fragmentation and soil erosion in tropical forests.Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.  相似文献   

17.
Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest (SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements. Research was conducted over one year in Xishuangbanna during May, June, July and October 2015 (wet season) and January and March 2016 (dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha-1 yr-1 in natural forest and 11.7 and 5.7 Mg C ha-1 yr-1 in rubber plantation. Using a linear mixed effects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level.  相似文献   

18.
The shell color of Pacific oyster (Crassostrea gigas) is a desirable trait; but the nutritional studies on C. gigas with different shell colors have not been conducted. Through successive selective breeding, five shell color strains of black (B), purple (P), orange (O), golden (G) and white (W) C. gigas have been developed. The aim of this study was to evaluate the chemical composition and nutritional value of five shell color strains and one commercial population with a common color. The biochemical composition including moisture, total protein, glycogen, ash, total fat, fatty acids (FA), amino acids and minerals was detected. The results indicated that the protein (50.76%–56.57%) was the major component. The content of glycogen showed a significant difference between orange shell and golden shell strains, as well as between commercial population and golden shell strain. In addition, all shell color strains contained a large amount of essential amino acids (12.20–14.15 g (100 g)?1), of them leucine (2.81–3.29 g (100 g)?1) and lysine (2.79–3.28 g (100 g)?1) were predominant. The oysters were rich in polyunsaturated fatty acids (42.26%–45.24% of total fatty acid) with high levels of DHA (18.53%–21.16% of total fatty acid) and EPA (17.23%–18.68% of total fatty acid). Significant differences of mineral contents (Mg, Zn, Fe and Cu) were identified among the six populations. These results indicated that C. gigas with different shell colors presented rich nutritional value with high protein, glycogen, essential amino acids and polyunsaturated fatty acids. The biochemical composition obtained in this study is useful for selective breeding of C. gigas with different shell colors.  相似文献   

19.
Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carbon estimates are scarce globally, particularly in Mexico. The objective of this study was to simulate future land-cover scenarios for the Sierra Madre Oriental in Mexico, by analyzing past forest cover changes. Another objective was to estimate stored carbon in the two study areas. These objectives involve the generation of information that could be useful inputs to anti-deforestation public policy such as the REDD+ strategy. Remote sensing was used to measure land cover change and estimate carbon stocks. Satellite images from 2015, 2000 and 1986 were used, and Dinamica EGO freeware generatedmodels of future projections. Between 1986 and 2015, 5171 ha of forest were converted to pasture. The annual deforestation rates were –1.5% for Tlanchinol and –1.3% for the San Bartolo Tutotepec sites. Distance to roads and marginalization were highly correlated with deforestation. By 2030, an estimated 3608 ha of forest in these sites will have been converted to pasture. Stored carbon was estimated at 16.35 Mg C ha-1 for the Tlanchinol site and 12.7 Mg C ha-1 for the San Bartolo site. In the Sierra Madre Oriental deforestation due to land cover change(–1.4%) is higher than levels reported worldwide. Besides having high values of stored carbon(14.5 Mg C ha-1), these forests have high biodiversity. The models' outputs show that the deforestation process will continue if action is not taken to avoid the expansion of livestock pasturing. This can be done by paying incentives for forest conservation to the owners of the land. The results suggest that REDD+ is currently the most viable strategy for reducing deforestation rates in tropical montane cloud forests in Sierra Madre Oriental.  相似文献   

20.
This study investigated the seasonal changes in carbon (C) and nitrogen (N) stable isotope values of several typical food sources of Apostichopus japonicus in a farm pond, including particulate organic matter (POM), macroalgae, benthic microalgae and animals such as nematode and copepod. The stable isotope technique was used to quantify relative contributions of various sources to the food uptake by A. japonicus. The results showed that significant changes occurred in the C and N stable isotope values of sea cucumber food sources due to the seasonality of micro-or macroalgae prosperity and the fluctuation of environmental conditions. The sea cucumber A. japonicus exhibited corresponding alterations in feeding strategy in response to the changes in food conditions. Calculation with a stable isotope mixing model showed that macroalgae was the principal food source for A. japonicus throughout the 1-yr investigation, with the relative contribution averaging 28.1% - 63.2%. The relative contributions of other food sources such as copepod and nematode, POM, benthic microalgae to the total food uptake by sea cucumber averaged 22.6% - 39.1%, 6.3% - 22.2%, 2.8% - 6.5%, and 2.8% - 4.2%, respectively. Together these results indicated that the seasonal changes in food sources led to the obvious temporal differences in the relative contribution of various food sources utilized by A. japonicus. Such findings provide the basic scientific information for improving the aquaculture techniques of A. japonicus, particularly for optimizing the food environment of A. japonicus culture in farm ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号