首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Using various additives has been considered as one of the most common stabilization methods for improvement of engineering properties of fine-grained soils. In this research the effect of sewage sludge ash (SSA) and hydrated lime (HL) on compressive strength of clayey soil was investigated. For this purpose, 16 kinds of mixtures or treatments were made by adding different amounts of SSA; 0, 5, 10 and 15% by weight and HL; 0, 1, 3 and 5% by weight of a clayey soil. First, compaction characteristics of the treatments were determined using Harvard compaction test apparatus. So that, 12 unconfined compressive strength test specimens were made using Harvard compaction mold from each treatments taking into account four different curing ages, including 7, 14, 28 and 90 days in three replications. Therefore, a total of 192 specimens were prepared and subjected to unconfined compressive strength tests. The results of this study showed that the maximum dry density of the treated soil samples decreases and their optimum water content increases by increasing the amount of SSA and hydrated lime in the mixtures. It is also found that the adding of HL and SSA individually would increase the compressive strength up to 3.8 and 1.5 times respectively. The application of HL and SSA with together could increases the compressive strength of a clayey soil more efficiently even up to 5 times.  相似文献   

2.
A crude contaminated soil, arising from an oil production zone in Tabasco, Mexico was studied. A sample of about 40 kg was dried and screened through meshes 10–100. Total petroleum hydrocarbons and 6 metals (Cd, Cu, Cr, Ni, V and Zn) were determined to the different portions. For soil which passed mesh 10, six non-ionic, three anionic and one zwitterionic surfactant solutions (0.5%) were employed to wash the soil. Additional tests using surfactant salt mixtures and surfactants mixtures were carried out. Once the best soil washing conditions were identified, these experimental conditions were applied for washing the rest of the soil portions obtained (meshes 4, 6, 20, 40, 60, 80, 100). Total petroleum hydrocarbons values were in the range of 51, 550 to 192, 130 mg/kg. Cd was not found in any of the soils portions, and the rest of the metals were found at different concentrations, for every soil mesh. Treatability tests applied to the soils indicated that it is possible to get removals between 9.1 to 20.5%. For the case of a sodium dodecyl sulphate 1% solution, total petroleum hydrocarbons removal was as high as 35.4%. Combinations of sodium docecyl sulphate and salts, gave removal rates up to 49.5%. Total petroleum hydrocarbons concentrations for the whole soil were about 150,600 mg/kg. The higher the particle size, the lower the washing removal rate. The combined effect of particle size and total petroleum hydrocarbons concentration, determines the total petroleum hydrocarbons removal efficiencies. These facts are very important for designing an appropriate soil washing remediation process.  相似文献   

3.
Sorption of three surfactants and personal care products in four types of commonly occurring Indian soils was extensively studied. The soils used in the study were red soil, clay soil, compost soil and sandy soil as classified by American Society for Testing and Materials (ASTM). The three surfactants used in the study were representative of cationic, non-ionic and anionic surfactant groups. The sorption of surfactants followed the descending order: sodium dodecyl sulphate (SDS) > trimethyl amine (TMA) > propylene glycol (PG). The maximum adsorption capacity (Qmax) was obtained in compost soil (28.6 mg/g for SDS; 9.4 mg/g for TMA and 4 mg/g for PG). The rate of adsorption was the maximum in compost soil followed by clay and red soils, and minimum for sandy soils. It is found that the Freundlich model fits the isotherm data better than the Langmuir model. Freundlich coefficient (K f) increased as the organic content of soils increased. Desorption of target pollutants in tap water was 20–50% whereas acid desorbs 40–90% of target pollutants from soil matrix. It was also found that the adsorption and desorption were significantly affected by the presence of clay and organic matter. The results also indicate that surfactants and personal care products, especially TMA and PG, are highly mobile in sandy soil followed by red soil. Therefore, immobilization of target pollutants is most economical and effective in compost and clayey soils whereas for other type of soils the combination of physiochemical and biological process will be effective option for remediation.  相似文献   

4.
The changes in the shrinkage and physicochemical properties of untreated and treated organic soil using several chemical additives were investigated. In order to evaluate the effect of each chemical solution on the peaty soil environment different experiments namely; shrinkage limit, unconfined compressive strength (UCS), pH test, and water content were undertaken. The results of the laboratory experiments are further proved and interpreted using the X-ray diffraction, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy tests. The result unveils the structure of the treated soil significantly changed depending upon the used additive type and concentrations. The rate of shrinkage largely decreased when sodium silicate additives are used. In addition, it was observed that UCS value increased up to 500% and water content reduced up to 50% in comparison with untreated samples, depend on the amount of used non-traditional additives. The SEM micrographs of the sample before and after treatment validate the results obtained and analyzed from experiments.  相似文献   

5.
文桃  米海珍  杨鹏  应赛  王月礼 《岩土力学》2015,36(7):1945-1952
为了全面地揭示硫酸盐渍土击实性能的变化原因和规律,对不同条件下配制的硫酸盐渍土进行了一系列的轻型击实试验。试验研究表明,含盐量对硫酸盐渍土最大干密度和最优含水率的影响规律并不是单一不变的,它取决于土中硫酸钠的3种状态(硫酸钠溶液、无水硫酸钠和十水硫酸钠)及3种状态间的相对含量。硫酸盐渍土的最大干密度和最优含水率与土中不同状态硫酸钠相对含量间的关系曲线具有反相关性。闷料时间和初始含水率对硫酸盐渍土击实性能的影响与含盐量有关,当含盐量较低(如1.5%)时,其影响甚小;当含盐量较高(如5.0%)时,其影响显著。硫酸盐渍土在由湿到干的过程中会出现“假干现象”。该试验结果对工程中硫酸盐渍土的击实性能和压实度的合理评价都具有重要的参考价值。  相似文献   

6.
The paper presents the results of the study which influence the use of recycled waste expanded polystyrene foams (EPS), as a lightweight material used with river sand. In this study, thermally modified waste EPS have been used. The waste EPS were put in an oven at 130 °C through 15 min to obtain modified expanded polystyrene (MEPS). The influences of MEPS on compaction properties such as maximum dry density and optimum moisture content were investigated. For this purpose, five series of compaction tests were carried out. MEPS were added to river sand at 5, 10, 15, and 20 % by weight. The test results showed that addition of 20 % MEPS in sand reduces the density of mixture almost 50 %. MEPS can be an alternative light weight fill material for geotechnical applications.  相似文献   

7.
Monitoring of soil properties is a significant process and plays an important role about how it can be used sustainably. This study was performed in a local area in Sawda Mountains KSA to map out some soil properties and assess their variability within the area under different land cover. Soil sampling was carried out in four different sites using the grid sampling technique. Ten samples were collected in each location within a 10 by 10 km area; soil was sampled at 0–30-cm depth. The soil samples were air-dried, crushed, and passed through a 2-mm sieve before analyzing it for pH, EC, CaCO3, organic matter contents, and bulk density. The thematic maps of these characteristics were produced using ArcGIS 10.0 software. Finally, the land degradation was assessed using three factors: soil salinization, compaction, and edibility. The obtained results showed that the high risk of soil compaction, salinization, and erodibility occupied an area 5.6 ha (17.5%), 3.7 ha (11.54%), and 8.1 ha (25.3%), respectively, in the surface soil layer. The land degradation risk in the study area due to salinization was low to high; however, the degree of soil compaction was moderate to very high. The K-factor (soil erodibility) in the area ranged between 0.1 and 0.35 Mg h MJ?1 mm?1, and most of the study area was located in moderate to high erodibility classes.  相似文献   

8.
The behaviour of two types of limestones having a different porosity, Maastricht and Euville limestone, laden with aqueous solutions of equimolar mixtures of sodium sulphate/sodium nitrate or sodium sulphate/potassium sulphate was investigated. At 50 % RH, the efflorescences on Maastricht samples during the first 30 h of drying consisted of similar amounts of thenardite and darapskite in case of an equimolar mixture of sodium sulphate/sodium nitrate while those on Euville samples under the same conditions contained mainly darapskite. After drying at 20 °C and 85 % RH, thenardite, formed through the precipitation and dehydration of mirabilite, was mostly detected in the efflorescences on both Maastricht and Euville samples. Re-wetting by increasing the RH from 50 to 85 % resulted in substantial damage on Maastricht stone laden with an equimolar mixture of sodium sulphate/sodium nitrate as a consequence of high supersaturation of mirabilite. In case of a contamination with equimolar amounts of sodium sulphate and potassium sulphate, the efflorescence on both limestones during drying at 50 % RH contained predominantly aphthitalite. The observed crystallisation behaviour is compared to the theoretical behaviour. The results indicate a strong influence of stone properties on the crystallisation behaviour of salt mixtures.  相似文献   

9.
Biosurfactants are frequently used in petroleum hydrocarbon and dense non-aqueous phase liquids (DNAPLs) remediation. The applicability of biosurfactant use in clayey soils requires an understanding and characterization of their interaction. Comprehensive effects of surfactants and electrolyte solutions on kaolinite clay soil were investigated for index properties, compaction, strength characteristics, hydraulic conductivities, and adsorption characteristics. Sodium dodecyl sulfate (SDS) and NaPO3 decreased the liquid limit and plasticity index of the test soil. Maximum dry unit weights were increased and optimum moisture contents were decreased as SDS and biosurfactant were added for the compaction tests for mixtures of 30% kaolinite and 70% sand. The addition of non-ionic surfactant, biosurfactant, and CaCl2 increased the initial elastic modulus and undrained shear strength of the kaolinite–sand mixture soils. Hydraulic conductivities were measured by fixed-wall double-ring permeameters. Results showed that the hydraulic conductivity was not significantly affected, but slightly decreased from 1×10−7 cm/s (water) to 0.3×10−7 cm/s for Triton X-100 and SDS. The adsorption characteristics of the chemicals onto kaolinite were also investigated by developing isotherm curves. SDS adsorbed onto soil particles with the strongest bonding strength of the fluids tested. Correlations among parameters were developed for surfactants, electrolyte solutions, and clayey soils.  相似文献   

10.
Expansive soils undergo alternate swelling and shrinkage due to cyclic wetting and drying when left to nature. This property of Expansive soil affects its strength and stiffness characteristics thereby causing damage and distress to structures built on them. Industrial wastes can be added scientifically to these soils in modifying and reducing their swelling and shrinkage behaviour and increasing their strength and stiffness. In this technical article, an attempt has been made to study the compressibility and drainage characteristics of these soils using economic and ecofriendly industrial wastes such as Fly Ash and Dolochar as stabilizers. This paper also focuses on many other improved engineering properties of base soil like liquid limit, plasticity index, differential free swell, compaction and consolidation characteristics of Expansive (BC) soil stabilized with Fly Ash and Dolochar in different proportions. The virgin Expansive soil has been collected from eastern part of India (Odisha) and different percentages of Fly Ash (5, 10, 15, 20, 25 and 30 %) and Dolochar (5, 10, 15, 20, 25 and 30 %) were added to it, to predict the influence of these additives on compaction and consolidation characteristics of Expansive soil. Addition of both Fly Ash and Dolochar were found to decrease the index properties such as liquid limit, plastic limit, plasticity index, swelling index and enhancing the consolidation as well as drainage characteristics of Expansive soil. However, the maximum dry density of soil was found to decrease with addition of Fly Ash and increase with addition of Dolochar.  相似文献   

11.
Soil salinity and sodicity are escalating problems worldwide, especially in arid and semiarid regions. A laboratory experiment was conducted using soil column to investigate leaching of soluble cations during reclamation process of a calcareous saline–sodic soil (CaCO3?=?20.7%, electrical conductivity (EC)?=?19.8 dS m?1, sodium absorption ratio (SAR)?=?32.2[meq L?1]0.5). The amendments consisted of control, cattle manure (50 g kg?1), pistachio residue (50 g kg?1), gypsum (5.2 g kg?1; equivalent of gypsum requirement), manure + gypsum and pistachio residue + gypsum, in three replicates which were mixed thoroughly with the soil, while sulfuric acid as an amendment was added to irrigation water. To reflect natural conditions, after incubation period, an intermittent irrigation method was employed every 30 days. The results showed that EC, SAR, and soluble cations of leachate for the first irrigation step were significantly higher than those of the subsequent leaching runs. Moreover, the concentration of removed soluble cations was lower for the control and gypsum-treated soils. It was found that among applied amendments, treatments containing cattle manure showed higher concentrations of sodium, calcium, and magnesium in the leachate, while due to pistachio residue application, further amount of potassium was removed out of soil column. The addition of pistachio residue resulted in the highest reduction in soil salinity and sodicity since the final EC and exchangeable sodium percentage dropped to 18.0% and 11.6% of their respective initial values, respectively. In the calcareous soil, solubility of gypsum found to be limited, in contrast, when it was added in conjunction with organic amendments, greater amounts of sodium were leached.  相似文献   

12.
The use of machinery in vineyards is increasing soil compaction and erosion. However, there is a lack of information about the impacts of different management practices on soil conditions of vineyards. Therefore, the aim of this study was to assess soil compaction in Croatian vineyards under four different management systems: no-tillage (NT) system, conventional tillage (CT), yearly inversed grass covered (INV-GC) and tillage managed (INV-T) treatments. Four key top-soil (0–20 cm) parameters were assessed in the different land uses: bulk density (BD), penetration resistance (PR), soil water content (SWC) and carbon dioxide (CO2) fluxes. Tractor traffic increased the BD and PR in all treatments, with exception of CT treatment, as consequence of tillage. SWC showed higher values in INV-GC treatment during the dry period; meanwhile, it was similar during the wet season in every management type. Lower CO2 fluxes were found in INV-GC and NT than in the CT and INV-T treatments.  相似文献   

13.
Laboratory tests were conducted on a reddish-brown lateritic soil treated with up to 12 % bagasse ash to assess its suitability in waste containment barriers applications. Soil samples were prepared using four compaction energies (i.e. reduced Proctor, standard Proctor, West African Standard or ‘intermediate’ and modified Proctor) at ?2, 0, 2 and 4 % moulding water content of the optimum moisture content (OMC). Index properties, hydraulic conductivity (k), volumetric shrinkage and unconfined compressive strength (UCS) tests were performed. Overall acceptable zones under which the material is suitable as a barrier material were obtained. Results recorded showed improved index properties; hydraulic conductivity and UCS with bagasse ash treatment up to 8 % at the OMC. Volumetric shrinkage strain increased with higher bagasse ash treatment. Based on the overall acceptable zone obtained, an 8 % optimal bagasse ash treatment of the natural lateritic soil makes it suitable for use in waste containment barrier application.  相似文献   

14.
With rapid advancements in technology globally, the use of plastics such as polyethylene bags, bottles etc. is also increasing. The disposal of thrown away wastes pose a serious challenge since most of the plastic wastes are non-biodegradable and unfit for incineration as they emit harmful gases. Soil stabilization improves the engineering properties of weak soils by controlled compaction or adding stabilizers like cement, lime etc. but these additives also have become expensive in recent years. This paper presents a detailed study on the behavior and use of waste plastic in soil improvement. Experimental investigation on reinforced plastic soil results showed that, plastic can be used as an effective stabilizer so as to encounter waste disposal problem as well as an economical solution for stabilizing weak soils. Plastic reinforced soil behaves like a fiber reinforced soil. This study involves the investigation of the effect of plastic bottle strips on silty sand for which a series of compaction, direct shear and California bearing ratio (CBR) tests have been performed with varying percentages of plastic strips and also with different aspect ratios in terms of size. The results reflect that there is significant increment in maximum dry unit weight, Shear Strength Parameters and CBR value with plastic reinforcement in soil. The quantum of improvement in the soil properties depends on type of soil, plastic content and size of strip. It is observed from the study that, improvement in engineering properties of silty sand is achieved at 0.4% plastic content with strip size of (15 mm?×?15 mm).  相似文献   

15.
At present, nearly 100 million tonnes of fly ash is being generated annually in India posing serious health and environmental problems. To control these problems, the most commonly used method is addition of fly ash as a stabilizing agent usually used in combination with soils. In the present study, high-calcium (ASTM Class C—Neyveli fly) and low-calcium (ASTM Class F—Badarpur fly ash) fly ashes in different proportions by weight (10, 20, 40, 60 and 80 %) were added to a highly expansive soil [known as black cotton (BC) soil] from India. Laboratory tests involved determination of physical properties, compaction characteristics and swell potential. The test results show that the consistency limits, compaction characteristics and swelling potential of expansive soil–fly ash mixtures are significantly modified and improved. It is seen that 40 % fly ash content is the optimum quantity to improve the plasticity characteristics of BC soil. The fly ashes exhibit low dry unit weight compared to BC soil. With the addition of fly ash to BC soil the maximum dry unit weight (γdmax) of the soil–fly ash mixtures decreases with increase in optimum moisture content (OMC), which can be mainly attributed to the improvement in gradation of the fly ash. It is also observed that 10 % of Neyveli fly ash is the optimum amount required to minimize the swell potential compared to 40 % of Badarpur fly ash. Therefore, the main objective of the study was to study the effect of fly ashes on the physical, compaction, and swelling potential of BC soils, and bulk utilization of industrial waste by-product without adversely affecting the environment.  相似文献   

16.
The present research work deals with an expansive high plastic clayey soil with cement kiln dust (CKD) and stabilizer (RBI Grade 81). The physical and engineering properties of soil are plasticity, compaction, unconfined compressive strength (UCS), consolidation and California bearing ratio (CBR) of the clayey soil and clay treated with CKD and stabilizer were determined. Soil chemistry was examined before and after treatment using scanning electron microscope (SEM) and elemental dispersive spectrometer. The clay mixed with CKD, CKD and RBI Grade 81 was found that optimum contents are 10 % (CKD), 15 % CKD with 4 % RBI Grade 81, respectively. The result indicates that CKD alone will decrease maximum dry density and increase optimum moisture content. CKD with RBI Grade 81 slightly increases maximum dry density and decreases optimum moisture content. UCS increased with CKD alone and CKD with RBI Grade 81 from 88.3 to 976 kN/m2, respectively. CBR values were increased by the addition of CKD, CKD with RBI Grade 81 from 1.65 to 21.7 %. With the curing time of 3, 14 and 28 days, UCS and CBR values were increased due to pozzolanic reaction from cementations material. The treated soil has considerable reduction in compression index. SEM images clearly indicate the formation of CSH and CAH gel.  相似文献   

17.
Several methods are used to improve mechanical properties of loose soils including rewetting, soil replacement, compaction control, chemical additives, moisture control, thermal methods, and more recently, discrete fibers. All the methods are applied to soft soil to increase load bearing capacity and to improve other properties such as prevention of erosion and dust generation. In the present study, a new method of soil improvement using both discrete polypropylene (PP) fibers and polyvinyl acetate (PVAc) is introduced. The method is applied to improve load bearing capacity of a problematic sandy soil in both dry and saturated states. Based on the results from CBR tests on various specimens, it has been revealed that the combination of PP fiber and PVAc resin with weight percentages of 0.1 and 0.6 %, respectively, had the optimum effect in increasing the CBR value in both saturated and dry soil specimens. It should be mentioned that this method has caused a great increase in the CBR value in the saturated soil.  相似文献   

18.
Kerman province, located in the south eastern Iran, is dominated with clays which can be used in different projects. The liner system within a landfill is constructed to control leachate migration and can be constructed by low permeable natural soils or plastic lining materials, environmentally however, natural materials is preferred that usually need to be amended in order to meet requirements recommended by environmental agencies. This research examines the possibility of using the Kerman collapsible clay as a liner layer material. A set of laboratory test was conducted on pure soil samples and additive treated samples. The moderate collapse potential of the used soil is decreased with wet compaction and under the effect of additive-soil reactions. Laboratory investigations showed that lime and bentonite treatment improved the hydraulic conductivity. The results revealed hydraulic conductivities on the order of 10?8 m/s. The obtained values met the 1.0E?07 m/s criterion required by Iranian standards. Unconfined compression tests were also performed on pure soil and additive amended samples. The unconfined compression strength values demonstrated gradual decreases with the addition of bentonite and considerable increases with adding lime such that with adding 1% lime the unconfined compression strength increased by 75%. This study verified that the Kerman collapsing clay can be used as a liner material using lime and bentonite as additives.  相似文献   

19.
This paper presents an assessment on the use of dynamic compaction as a ground improvement technique in a port’s hydraulic fill in the new southern dock of Sagunto’s Harbor near Valencia (Spain). Soil behavior improvement was monitored by several in situ techniques such as boreholes with SPTs, DPSH, CPTU and CSWS geophysical tests. A total energy between 2188 and 3125 kN/m2 (depending the area) was applied to the hydraulic fill by the dynamic compaction procedure. In situ techniques led to evaluate dynamic compaction efficiency, as well as controlling ground modifications that might cause potential damages to adjacent buildings. The dynamic compaction carried out was capable of fulfilling requirements established to use the area, that is, an average deformability modulus (E′) of 30 MPa with a minimum of 20 MPa, in a depth of 10 m. Moreover, dynamic compaction increased hydraulic fill relative density by about 75%.  相似文献   

20.
In developing technically viable and economically sustainable methods of improving soil properties to suit the requirements of engineering structures, designers/engineers are to take into consideration the availability and cost effectiveness of materials required for such improvement scheme. In line with this, the present study evaluates stabilization effectiveness of combined quarry fines (QF) and cement kiln dust (CKD) on subgrades dominated by black cotton soil (BC soil). The experimental programme included Atterberg limits, compaction and California bearing ratio (CBR) tests on soil mixtures prepared with a representative BC soil at constant dosage of 10 % QF and 0, 4, 8, 12 and 16 % CKD. Prior to testing, soil mixtures for CBR test prepared at optimum moistures and compacted with British standard light compaction effort were soaked for 96 h after curing for 28 days. Test data show that the addition of QF and CKD together reduced the plasticity index that resulted in rapid textural changes and eventual improvement in constructability, led to an increase in the optimum moisture content and a decrease in the maximum dry unit weight. Furthermore, the coupled effects of QF and CKD resulted in substantial increase in CBR strength of the composite specimens. Overall, mixtures created using the proposed QF and CKD ratios rendered the soil physically and mechanically stable producing results that are compatible with desired values for engineering performance typically required by various user agencies for pavement subgrades. This improvement scheme is not only cost effective, but it is capable of lessening the demand on non renewable resources thereby reducing the footprint of road construction projects in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号