首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Laboratory tests were conducted on a reddish-brown lateritic soil treated with up to 12 % bagasse ash to assess its suitability in waste containment barriers applications. Soil samples were prepared using four compaction energies (i.e. reduced Proctor, standard Proctor, West African Standard or ‘intermediate’ and modified Proctor) at ?2, 0, 2 and 4 % moulding water content of the optimum moisture content (OMC). Index properties, hydraulic conductivity (k), volumetric shrinkage and unconfined compressive strength (UCS) tests were performed. Overall acceptable zones under which the material is suitable as a barrier material were obtained. Results recorded showed improved index properties; hydraulic conductivity and UCS with bagasse ash treatment up to 8 % at the OMC. Volumetric shrinkage strain increased with higher bagasse ash treatment. Based on the overall acceptable zone obtained, an 8 % optimal bagasse ash treatment of the natural lateritic soil makes it suitable for use in waste containment barrier application.  相似文献   

2.
水泥土固化过程中Ca2+浓度会随水化反应的进行而逐步降低,导致水泥颗粒未完全水化,固化土强度增长受限,而水泥基渗透结晶型防水材料(CCCW)中活性物质能催化未水化水泥颗粒反应。选择硫铝酸盐水泥(SAC)为胶凝材料、CCCW为添加剂,通过单掺与复掺的方式,结合X射线衍射(XRD)、电镜扫描(SEM)表征,分析了固化土的无侧限抗压强度、水稳定性、耐干湿循环性能及微观结构。结果表明,复掺16%混合料(4%CCCW+12%SAC)的固化土强度是同掺量下单掺SAC固化土强度的1.5倍,且比单掺20%SAC的固化土强度高1.41 MPa;复掺16%混合料(4%CCCW+12%SAC)的固化土泡水2~8 d软化系数平均达0.97,而同掺量下SAC固化土平均仅为0.73;单掺的固化土强度随干湿循环次数增加逐级降低,而复掺混合料的固化土强度呈波浪式发展;CCCW中活性物质能增加固化土中钙矾石生成量并修复微裂缝,钙矾石长径比显著增大,可直接连接两个甚至多个土颗粒,形成三维网状结构,显著提高结晶体的微观加筋、骨架及填充作用,改善SAC固化土强度、水稳定性及耐干湿循环性能。  相似文献   

3.
Non-traditional soil stabilizers are widely used for treating weak materials. These additives are cost- and time-effective alternatives to more traditional materials such as lime and cement. It has been well established that the treatment of natural soil with chemical additives will gradually affect the size, shape, and arrangement of soil particles. Furthermore, the degree of improvement is dependent on the quantity and the pattern of new products formed on and around the soil particles. In this paper, unconfined compressive strength (UCS) test was performed as an index of soil improvement on mix designs treated with calcium-based powder stabilizer (SH-85). The time-dependent changes in shear strength parameter and compressibility behavior of treated soil were also studied using standard direct shear and one-dimensional consolidation tests. In order to better understand the shape and surface area of treated particles, FESEM, N2-BET, and particle size distribution analysis were performed on soil-stabilizer matrix. From engineering standpoint, the UCS results showed that the degree of improvement for SH-85-stabilized laterite soil was roughly five times stronger than the untreated soil at the early stages of curing (7-day period). Also, a significant increase in the compressibility resistance of treated samples with curing time was observed. Based on the results, less porous and denser soil fabric was seen on the surface of clay particles. FESEM images of the treated mix designs showed the formation of white lumps in the soil fabric with the cementitious gel filling the pores in the soil structure.  相似文献   

4.
This paper describes a study on tropical peat soil stabilization to improve its physical properties by using different stabilizing agents. The samples were collected from six different locations of Sarawak, Malaysia, to evaluate their physical or index properties. Out of them, sample having the highest percentage of organic content has been selected for stabilization purposes. In this study, ordinary portland cement (OPC), quick lime (QL), and class F fly ash (FA) were used as stabilizer. The amount of OPC, QL, and FA added to the peat soil sample, as percentage of dry soil mass, were in the range of 5–20%; 5–20% and 2–8%, respectively for the curing periods of 7, 14, and 28 days. The Unconfined Compressive Strength (UCS) test was carried out on treated/stabilized samples with the above mentioned percentages of the stabilizer and the result shows that the UCS value increases significantly with the increase of all stabilizing agent used and also with curing periods. However, in case of FA and QL, the UCS value increases up to 15 and 6%, respectively with a curing period of 28 days but decreases rather steady beyond this percentage. Some UCS tests have been conducted with a mixture of FA and QL to study the combined effect of the stabilizer. In addition, Scanning Electron Microscope (SEM) study was carried out on original peat soil and FA, as well as some treated samples in order to study their microstructures.  相似文献   

5.
为了研究绿色环保新型流态固化土在狭窄肥槽回填等工程问题中的应用,提出稻壳灰联合地聚物固化工程渣土形成流态稻壳灰-地聚物固化土。采用无侧限抗压强度(UCS)试验、X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)等测试方法,研究稻壳灰的掺量与粒径对稻壳灰-地聚物固化土的无侧限抗压强度(UCS)的影响规律,并探讨了稻壳灰掺量与粒径对其微观结构影响规律。结果表明:稻壳灰-地聚物固化土的净浆流动度与稻壳灰的掺量、粒径呈负相关关系,其凝结时间与稻壳灰掺量呈正相关关系,但与稻壳灰的粒径呈负相关关系;稻壳灰-地聚物固化土UCS值随着稻壳灰的掺量增加、粒径降低而显著提高,当稻壳灰的掺量增加到10%后,强度提升效能降低,初步判定稻壳灰的最优掺量为10%;固化过程中产生水化硅铝酸钠(N-A-S-H)和水化硅酸钙(C-S-H)2种凝胶,起到填充内部孔隙和胶结土颗粒的作用,使整体结构趋于完整,是稻壳灰-地聚物固化土强度提升的根本原因。研究成果可为稻壳灰在流态固化土的工程应用提供理论依据。  相似文献   

6.
The present research work deals with an expansive high plastic clayey soil with cement kiln dust (CKD) and stabilizer (RBI Grade 81). The physical and engineering properties of soil are plasticity, compaction, unconfined compressive strength (UCS), consolidation and California bearing ratio (CBR) of the clayey soil and clay treated with CKD and stabilizer were determined. Soil chemistry was examined before and after treatment using scanning electron microscope (SEM) and elemental dispersive spectrometer. The clay mixed with CKD, CKD and RBI Grade 81 was found that optimum contents are 10 % (CKD), 15 % CKD with 4 % RBI Grade 81, respectively. The result indicates that CKD alone will decrease maximum dry density and increase optimum moisture content. CKD with RBI Grade 81 slightly increases maximum dry density and decreases optimum moisture content. UCS increased with CKD alone and CKD with RBI Grade 81 from 88.3 to 976 kN/m2, respectively. CBR values were increased by the addition of CKD, CKD with RBI Grade 81 from 1.65 to 21.7 %. With the curing time of 3, 14 and 28 days, UCS and CBR values were increased due to pozzolanic reaction from cementations material. The treated soil has considerable reduction in compression index. SEM images clearly indicate the formation of CSH and CAH gel.  相似文献   

7.
In order to reduce the brittleness of soil stabilized by lime only, a recent study of a newly proposed mixture of polypropylene fibre and lime for ground improvement is described and reported in the paper. To investigate and understand the influence of the mixture of polypropylene fibre and lime on the engineering properties of a clayey soil, nine groups of treated soil specimens were prepared and tested at three different percentages of fibre content (i.e. 0.05%, 0.15%, 0.25% by weight of the parent soil) and three different percentages of lime (i.e. 2%, 5%, 8% by weight of the parent soil). These treated specimens were subjected to unconfined compression, direct shear, swelling and shrinkage tests. Through scanning electron microscopy (SEM) analysis of the specimens after shearing, the improving mechanisms of polypropylene fibre and lime in the soil were discussed and the observed test results were explained. It was found that fibre content, lime content and curing duration had significant influence on the engineering properties of the fibre–lime treated soil. An increase in lime content resulted in an initial increase followed by a slight decrease in unconfined compressive strength, cohesion and angle of internal friction of the clayey soil. On the other hand, an increase in lime content led to a reduction of swelling and shrinkage potential. However, an increase in fibre content caused an increase in strength and shrinkage potential but brought on the reduction of swelling potential. An increase in curing duration improved the unconfined compressive strength and shear strength parameters of the stabilized soil significantly. Based on the SEM analysis, it was found that the presence of fibre contributed to physical interaction between fibre and soil whereas the use of lime produced chemical reaction between lime and soil and changed soil fabric significantly.  相似文献   

8.
土壤添加物对土-水曲线和土体收缩的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
为探索不同添加物(小麦秸秆、麦壳和植物油渣)对土壤持水性能和土壤收缩特性的影响,定量掺混3种粉末,采用离心机法测定土-水曲线,并对土壤持水能力和土壤收缩特征进行评价。结果发现:各处理土-水曲线形态无差异,van Genuchten模型可用于此条件土-水曲线拟合;3种添加物均可提高土壤容重和土壤含水率并利于保水,且土壤持水能力表现为油渣 >麦秆 >麦壳 >纯土;随着土壤脱水,土体以轴向收缩为主,三直线模型可用于土壤收缩曲线拟合,土体线缩率与吸力和含水率分别满足对数和Logistic函数关系;土体几何收缩量表现为麦壳 <油渣 <麦秆 <纯土,土壤开裂程度表现为油渣 <麦秆 <麦壳 <纯土。  相似文献   

9.
In this study, the effects of cement kiln dust (CKD) on the swelling properties, strength properties, and microstructures of CKD-stabilized expansive soil were investigated. Samples were prepared and stabilized with different CKD content ratios, ranging from 0 to 18% by dry mass. The results obtained show that the maximum swelling pressures decrease exponentially with increases in CKD content. Both the cohesion and unconfined compressive strength (UCS) increase at ratios below 10% CKD and then decrease slightly, above that ratio. CKD can also improve the strength of saturated, expansive soil. There is no visible change of UCS for soil without CKD when cured, while the UCS of a sample with 10% CKD content after curing for 90 days is higher than that after curing for only 1 day. This indicates that CKD can improve the long-term strength of expansive soil. Finally, microstructure analysis reveals that the addition of CKD reduces the montmorillonite content of expansive soil and decreases its swelling properties. The addition of CKD also changes the pore volume distribution, both the size and amount of macro-pores and micro-pores decrease with increase in CKD content. For saturated samples, the size of macro-pores is obviously reduced, while that of micro-pores is slightly increased for both treated and untreated soils. Hydration and saturation processes make the soil structure become dispersive which results in a lower strength, and adding CKD can restrain this process. The suggested optimal CKD content is between 10 and 14% and with a curing time of more than 27 days.  相似文献   

10.
膨胀土的收缩性明显,容易引发边坡与地基开裂,但有关结构性对收缩特性影响的认识甚少。采用收缩自动试验装置,在恒湿恒温条件下对原状膨胀土和重塑膨胀土开展了收缩对比试验和扫描电镜(scanning electron microscope,简称SEM)测试分析,结果表明:与原状土相比,重塑土在土中水流动阶段的蒸发速率较小,蒸汽扩散阶段收缩稳定速率较慢,最终体积收缩应变量更大;重塑土体积收缩−含水率关系曲线的线性段较长,斜率较大,直线段与稳定段之间的过渡不明显,而原状土则反之;重塑土和原状土的收缩特征曲线(soil shrinkage characteristic curves,简称SSC)在较高含水率段基本重合,随着含水率下降,重塑土的SSC下降更快,对应的含水率范围更宽,最后进入残余−零收缩阶段时,孔隙比明显较小;Chertkov收缩模型适用于原状膨胀土,但不适用于重塑膨胀土。SEM测试结果表明,原状膨胀土较重塑膨胀土具有更强的原生结构性,初始密度与湿度相同情况下,两者颗粒排列、接触方式、胶结状态、孔隙大小与分布特征等微观结构上差异明显,导致蒸发过程中重塑土的水分迁移速率较小、基质吸力较大,是重塑土收缩更剧烈的内在原因。研究结果可为膨胀土边坡的坡面工程防护设计提供参考依据。  相似文献   

11.
Adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) models have been extensively used to predict different soil properties in geotechnical applications. In this study, it was aimed to develop ANFIS and ANN models to predict the unconfined compressive strength (UCS) of compacted soils. For this purpose, 84 soil samples with different grain-size distribution compacted at optimum water content were subjected to the unconfined compressive tests to determine their UCS values. Many of the test results (for 64 samples) were used to train the ANFIS and the ANN models, and the rest of the experimental results (for 20 samples) were used to predict the UCS of compacted samples. To train these models, the clay content, fine silt content, coarse silt content, fine sand content, middle sand content, coarse sand content, and gravel content of the total soil mass were used as input data for these models. The UCS values of compacted soils were output data in these models. The ANFIS model results were compared with those of the ANN model and it was seen that the ANFIS model results were very encouraging. Consequently, the results of this study have important findings indicating reliable and simple prediction tools for the UCS of compacted soils.  相似文献   

12.
红黏土水敏性强,添加石灰等碱性材料处治后,能获得即刻的改良效果,但由于红黏土呈弱酸性,石灰改良后其长期性能会衰减。为提高石灰稳定红黏土(简称La+L)的长期性能,添加偏高岭土(4%)协同石灰(5%)稳定红黏土(简称La+L+MK),改善其水敏性和酸?碱互损作用。制备8种初始含水率的压实试样(初始孔隙比相同),养护到预定时间后开展无侧限抗压强度试验,同时,测定试样的钙离子浓度、电导率和pH值。结果表明:初始含水率为26%左右时,改良土的无侧限抗压强度最高,初始含水率偏高或偏低都不利于改良土的强度增长。究其原因,试样偏干时,缺少水分,石灰水化不充分,不能形成游离态钙离子,无法进行火山灰反应,颗粒之间无法形成胶结;试样偏湿时,火山灰反应形成的胶结强度不及过量水分引起的基质吸力丧失量。试样的钙离子浓度和电导率变化规律,证实了以上原因解释的猜想。当然,添加偏高岭土后,能够显著改善偏湿状态下的石灰土强度。即使浸水饱和后,相对石灰改良土,也能够保持较高的强度,充分证明偏高岭土能够有效降低石灰土水敏性,提高其耐久性。偏高岭土直接提供了大量硅、铝氧化物,且将土体pH值降到有利于硅、铝氧化物溶解的碱性范围,加速火山灰反应,缓减或抑制石灰?红黏土的互损作用。  相似文献   

13.
Performance of fine-grained soil treated with industrial wastewater sludge   总被引:1,自引:0,他引:1  
This paper is likely one of the very recent researches based on an experimental study, which aims to investigate some geotechnical performances of fine-grained soil treated with industrial wastewater sludge. The experimental program conducts the standard compaction, direct shear, California bearing ratio (CBR), and unconfined compressive strength (UCS) tests. The sludge proportions in samples of the soil + sludge mixtures are 0, 5, 10, 20, 30, 40, 50, 60, 70, and 80 % by dry weight of the mixture. The results indicate that the internal friction angle of untreated soil is significantly enhanced at most of the sludge dosages (p < 0.05). The CBR values offer that the soil quality can be improved to “good” rating quality to use “base” layers in stabilizations up to the 50 % sludge dosage. The contribution is also obtained by the UCS values that increase with the sludge addition. Moreover, the stress–strain responses promise to develop the ductility behavior due to the sludge inclusion. Consequently, the soil mixtures treated with the sludge have exhibited satisfactory geotechnical characteristics. Thus, this study suggests that the industrial wastewater sludge can be potentially employed for improvement of fine-grained soil in the stabilizations. The proposed soil stabilization with locally available industrial wastewater sludge can also provide recycling and sustainability to the environment.  相似文献   

14.
A reddish brown lateritic soil treated with up to 15% blast furnace slag was compacted with three compactive efforts, (standard Proctor, West African Standard and modified Proctor) with moulding water contents ranging between 10 and 20% of weight of dry mixture. Compacted samples were extruded and allowed to dry in the laboratory for 30 days with measurements taken every 5 days to monitor volumetric changes due to drying. Four specimens compacted on the wet side of optimum using standard proctor effort; at the various slag treatments after 10 days of drying were subjected to four cycles of drying and three cycles of wetting. The results obtained showed that the changes in mass and volumetric shrinkage were rapid within the first 5 days of drying. These changes were proportional to the moulding water contents and were unaffected by the compactive effort. The volumetric shrinkage strain increased with increasing moulding water content and compactive efforts. As the water content relative to the optimum increased towards the wet side, the volumetric shrinkage strain increased and it decreased towards the dry side. For all compaction energies, the initial degree of saturation increased and regardless of the slag content, the volumetric shrinkage strain increased. As the slag content increased, the initial degree of saturation at which the permissible 4% volumetric shrinkage occurred increased. Slag content had marginal effects on the volumetric shrinkage strain as no clear trend was established. For each slag treatment the volumetric shrinkage strain did not vary significantly with increasing number of drying cycles.  相似文献   

15.
廖晓兰  杨久俊  张磊  张宝莲  梁超 《岩土力学》2015,36(8):2216-2222
滨海盐渍土中易溶盐遇水溶解,引起强度明显下降,变形增大,严重影响其作为生土材料的工程性能。利用丙烯酰胺(AM)原位聚合对盐渍土进行改良,探讨固化条件对其力学性能与耐水性能的影响。试验结果表明,当加热温度为70 ℃、加热时间为6 h,AM单体用量为盐渍土用量的3%,引发剂用量为AM用量的3%,且不加入交联剂时,用量较为经济且具有较高的抗压和抗折强度,在龄期为7、14、28 d时,其抗折强度分别可达到2.265、3.603、5.255 MPa;抗压强度分别达到5.6、13.7、16.2 MPa;与28 d龄期的原试样进行对比,AM聚合固化后试样的抗折强度和抗压强度分别提高了4~5倍,相比传统砌体砂浆材料强度大幅提高,加固后试样的耐水性能和收缩率也都得到明显的改善。利用电镜扫描(SEM)、X射线衍射光谱(XRD)对其微观机制变化进行了初步探讨,发现改良后土样孔隙含量大大减小,且其矿物结构并未发生变化,可视为一种新型环保生土建筑材料应用于工程建设中。  相似文献   

16.
Many tropical residual laterites have relatively poor engineering properties due to the significant percentage of fine-grained soil particles that they contain, which are formed by the soil weathering process. The widespread presence of laterite soils in tropical regions often requires that some form of soil improvement be performed to allow for their use in various civil engineering applications, such as for road base or subbase construction. One of the most commonly utilized stabilization techniques for laterite soils is the application of additives that chemically react with the minerals that are present in soil to enhance its overall strength; effective soil stabilization can allow for the use of site-specific soils, and can consequently result in significant cost savings for a given project. With an increasing focus on the use of more environmentally friendly and sustainable materials in the built and natural environments, there is an emerging interest in eco-friendly additives that are an alternative to traditional chemical stabilizers. The current study examines the viability of xanthan gum as an environmentally friendly stabilizer that can improve the engineering properties of tropical residual laterite soil. Unconfined compressive strength (UCS) tests, standard direct shear tests, Brunauer, Emmett, and Teller (N2-BET) surface area analysis tests and field emission scanning electron microscopy (FESEM) tests were used to investigate the effectiveness of xanthan gum for stabilization of a tropical laterite soil. The UCS test results showed that addition of 1.5% xanthan gum by weight yielded optimum stabilization, increasing the unconfined compressive strength of the laterite soil noticeably. Similarly, direct shear testing of 1.5% xanthan gum stabilized laterite specimens showed increasing Mohr–Coulomb shear strength parameters with increases in curing time. From the FESEM results, it was observed that the stabilization process modified the pore-network morphology of the laterite soil, while also forming new white layers on the surface of the clay particles. Analysis of the test results indicated that xanthan gum stabilization was effective for use on a tropical residual laterite soil, providing an eco-friendly and sustainable alternative to traditional soil stabilization additives such as cement or lime.  相似文献   

17.
Stabilization of fuel oil contaminated soil—A case study   总被引:1,自引:0,他引:1  
Fuel oil contamination brings adverse effect on basic geotechnical properties of foundation soil. The present study pertains to one such case, from the petrochemical complex near Vadodara City in Gujarat State, India. Here, the fuel oil contaminated soil samples exhibit drastic changes in their geotechnical parameters. Noteworthy among such deleterious changes are: decrease in maximum dry density (–4%), cohesion (–66%), angle of internal friction (–23%) and unconfined compressive strength (UCS) (–35%) and increase in liquid limit (+11%). An attempt has been made to stabilize the contaminated soil using various additives viz., lime, fly ash and cement independently as well as an admixture of different combinations. It is apparent from the test results that the stabilization agents improved the geo-technical properties of the soil by way of cation exchange, agglomeration, and pozzuolanic actions. The best results were observed when a combination of 10% lime, 5% fly ash and 5% cement was added to the contaminated soil. The improvement in unconfined compressive strength (UCS), cohesion and angle of internal friction can be attributed to neo-formations such as Calcium Silicate Hydrates (CSH, CSH-1) that coats and binds the soil particles. Formation of stable complex between oil and metallic cations, results in reduction of leachableoil.  相似文献   

18.
An expansive tropical black clay (also known as black cotton soil because the cotton plant thrives well on it) was treated with up to 15 % locust bean waste ash (LBWA) to assess its soil improvement potential. Samples were subjected to index, compaction using three energy levels (British Standard light, BSL, West African Standard, WAS or ‘Intermediate’ and British Standard heavy, BSH), shear strength (unconfined compressive strength, UCS), California bearing ratio, CBR and durability tests. Results obtained show that the natural soil is not suitable for road construction. The maximum dry density (MDD) and optimum moisture content (OMC) decreased and increased, respectively. Regardless of the compactive effort and curing period, strength and durability properties increased with higher LBWA content with the BSL effort recording the best improvement. However, based on durability results, the optimal 12.5 % LBWA treatment of black cotton soil did not satisfy criteria for its use in road construction as a stand alone additive. Also, significant improvement in soil properties was obtained using the BSL compactive effort, which is easily achieved in the field. The benefits of the application include reduction in the cost of soil improvement and the adverse environmental impact of locust bean waste.  相似文献   

19.
合徐高速公路南段膨胀土矿物成分及微结构   总被引:2,自引:1,他引:2  
运用X—射线衍射、偏光显微镜、扫描电镜以及化学全量分析等方法,对合徐高速公路南段膨胀土的矿物组分及微结构等方面进行较为深入的研究,探明其特殊的工程性质不仅与膨胀土的矿物组分、阳离子交换量有关,更与其微结构密切相关,特别是其结构联结特征;膨胀土的胀缩特性随着粘土矿物含量的增大,特别是蒙脱石、阳离子交换量能力的增强而增强;土的微结构是控制膨胀土胀缩性的另一个重要因素,随着粘土基质中的卷曲片状物质的增多而增强,而膨胀土的物理力学性质很大程度上取决于膨胀土粘土颗粒之间的结合连接程度。  相似文献   

20.
无机材料以兼容性强、耐久性好等特点被广泛应用于土遗址加固,特别疏松结构土遗址加固一直是学界关注的焦点,微纳米Ca(OH)2具有分子结构小、加固效果显著和耐久性好等特点。以世界文化遗产锁阳城为代表,制备密度为1.5g/cm3的疏松土样,采用浓度为5%、7.5%和10%微纳米Ca(OH)2的悬浊液滴渗加固,通过透气性、色差、无侧限抗压强度和抗剪强度测试发现,透气性下降值均在2%以内,5%和7.5%微纳米Ca(OH)2加固后色差ΔEab*均小于4,在一定范围内可接受;其中用浓度为7.5%微纳米Ca(OH)2加固3次后抗压强度和抗剪强度均有提高,无侧限抗压强度增长率为9.8%,土的黏聚力增加了34%,内摩擦角提高了9°;土-水特征曲线表明,微纳米Ca(OH)2对土的体积收缩率具有较好的抑制作用。扫描电镜、X射线衍射和热重分析发现,微纳米Ca(OH)2渗透加固后,在碱性环境下发生了的物理化学反应,在物理层面主要通过填充、包...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号