首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility behavior of K2O, Na2O, Al2O3, and SiO2 in silicate-saturated aqueous fluid and coexisting H2O-saturated silicate melts in the systems K2O-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O has been examined in the 1- to 2-GPa pressure range at 1100°C. Glasses of Na- and K-tetrasilicate compositions with 0, 3, and 6 mol% Al2O3 were used as starting materials. In both systems, the oxides dissolve incongruently in aqueous fluid and silicate melt. When recalculated to an anhydrous basis, the aqueous fluids are enriched in alkalis and depleted in silica and alumina relative to their proportions in the starting materials. The extent of incongruency is more pronounced in the Na2O-Al2O3-SiO2-H2O system than in the K2O-Al2O3-SiO2-H2O system.The partition coefficients of the oxides, Doxidefluid/melt, are linear and positive functions of the oxide concentration in the fluid for each composition. There is a slight dependence of the partition coefficients on bulk composition. No effect of pressure could be discerned. For alkali metals, the fluid/melt partition coefficients range from 0.06 to 0.8. For Al2O3 this range is 0.01 to 0.2, and for SiO2, it is 0.01 to 0.32. For all compositions, DK2Ofluid/melt∼DNa2Ofluid/melt>DSiO2fluid/melt>DAl2O3fluid/melt for the same oxide concentration in the fluid. DK2Ofluid/melt, DNa2Ofluid/melt, and DSiO2fluid/melt correlate negatively with the Al2O3 content of the systems. This correlation is consistent with a solubility model of alkalis that involve associated KOH°, NaOH°, silicate, and aluminate complexes.  相似文献   

2.

This study presents a new set of quantitative experimental data on the partitioning of Ta, Nb, Mn, and F between aqueous F-bearing fluid and water-saturated, Li- and F-rich haplogranite melts with varying alumina/alkali content at T = 650–850 °C and P = 100 MPa. The starting homogeneous glasses were preliminary obtained by melting of three gel mixtures of K2O-Na2O-Al2O3-SiO2 composition with a variable Al2O3/(Na2O+K2O) ratio, ranging from 0.64 (alkaline) and 1.1 (near-normal) to 1.7 (alumina-rich). Ta, Nb, and Mn were originally present in glass only, whereas F was load in both the glass and the solution. The solutionto-glass weight ratio was 1.5–3.0. The compositions of quenched glass were measured by an electronic microprobe, and those of the aqueous solution, with the ICP-MS and ICP-AES methods. The F concentration in the quenched solution was calculated from the mass balance. Under experimental conditions the partition coefficients of Ta, Nb, and Mn between the fluid and the granitic melt (weight ratio fluid C Ta/melt C Ta = fluid/melt D Ta) are shown to be extremely low (0.001–0.008 for Ta, 0.001–0.022 for Nb, and 0.002–0.010 for Mn); thus, these metals partition preferentially into the melt. The coefficients fluid/melt D Ta and fluid/melt D Nb generally increase either with increasing alumina ratio A/NKM in the glass composition, or with rising temperature. The experiments also demonstrated that F preferentially concentrates in the melt; and the partition coefficients of F are below 1, being within the range of 0.1–0.7.

  相似文献   

3.
In order to determine the mechanisms of formation and properties of natural hydrosilicate liquids (HSLs), which are formed during the transition from magmatic to hydrothermal mineral formation in granitic pegmatites and rare-metal granites, the formation of HSLs was experimentally studied in the Na2O-SiO2-H2O, Na2O-Al2O3-SiO2-H2O, and Na2O-K2O-Li2O-Al2O3-SiO2-H2O systems at 600°C and 1.5 kbar. It was shown that the sequential extension of composition does not suppress HSL formation in the systems and expands the stability field of this phase. However, HSLs formed in extended chemical systems have different structure and properties: the addition of alumina induces some compression of the structure of the silicate framework of HSLs, which results in a decrease in water content in this phase and probably hinders the reversibility of its dehydration. It was demonstrated that HSL can be formed by the coagulation of silica present in a silica-oversaturated alkaline aqueous fluid. It was supposed that the HSL formed during this process has a finely dispersed structure. It was argued that anomalous enrichment in some elements in natural HSLs can be due to their sorption by the extensively developed surface of HSL at the moment of its formation.  相似文献   

4.
Equilibria for several reactions in the system CaO-Al2O3-SiO2-CO2-H2O have been calculated from the reactions calcite+quartz=wollastonite+CO2 (5) and calcite+Al2SiO5+quartz=anorthite+CO2 (19) and other published experimental studies of equilibria in the systems Al2O3-SiO2-H2O and CaO-Al2O3-SiO2-H2O.The calculations indicate that the reactions laumontite+CO2=calcite+kaolinite+2 quartz+2H2O (1) and laumontite+calcite=prehnite+quartz+3H2O+CO2 (3) in the system CaO-Al2O3-SiO2-CO2-H2O, are in equilibrium with an H2O-CO2 fluid phase having -0.0075 for P fluid=P total=2000 bars.These calculations limit the stability of zeolite assemblages to low p CO2.Using the above reactions as model equilibria, several probelms of p CO2 in low grade metamorphism are discussed. (a) the problem of producing zeolitic minerals from metasedimentary assemblages of carbonate, clay mineral, quartz. (b) the significance of calcite (or aragonite) associated with zeolite (or lawsonite) in low grade metamorphism and hydrothermal alteration. (c) the reaction of zeolites (or lawsonite) with calcite (or aragonite) to produce dense Ca-Al-hydrosilicates (eg. prehnite, zoisite, grossular).  相似文献   

5.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

6.
Twenty three samples from the pyrophyllite-diaspore deposits have been investigated by x-ray diffraction and geochemical methods. The mineral assemblages belong to the K2O-Al2O3-SiO2-H2O system. Higher concentrations of Ti, Cr and Zr in the deposits as compared with the associated granites and gneisses suggest their laterite type parentage. Existing mineral assemblages are a result of low grade metamorphism (up to about 350°C) of the primary residual deposits containing a kaolinite - diaspore - quartz assemblage.  相似文献   

7.
Using density measurements on liquids in the systems Al2O3-SiO2, Na2O-Al2O3-SiO2, MgO-Al2O3-SiO2 and CaO-Al2O3-SiO2 the compositional dependence of the apparent partial molar volume of alumina (V?°A) in multicomponent silicate liquids is critically examined. These data do not support the recent suggestion of Bottingaet al. (1982) that V?°A should be expressed as a linear function of composition. Thermodynamic analysis of the derivation of Bottingael al. 's (1982) model for molar volumes in aluminumbearing multicomponent silicate liquids reveals that their comprehensive equation (no. 21) has been improperly formulated, and statistical considerations indicate that bias was introduced in calibrating the model parameters which appear in this equation. Our analysis suggests that a much simpler formulation, which does not incorporate non-zero volume of mixing terms, adequately reproduces the available data on the densities of multicomponent silicate liquids (including magmas) to within the limits of measurement.  相似文献   

8.
Material balance and equilibrium relations between H2O-rich fluids and sparingly soluble minerals are important for the understanding of chemical processes operative at the earths surface and within the earths crust. These two aspects of any chemical system are subject to graphical analysis, and a technique is devised to allow visual presentation of congruent and incongruent reactions between solutions and sparingly soluble silicate minerals in multi-component systems. The method also illustrates the changes in a solutions' composition resulting from both congruent and incongruent interactions with solids. The technique is particularly useful when interpreting reactions occurring during dissolution and precipitation experiments and is also valuable when interpreting the chemical history of ground waters and surface waters.Analysis of the system MgO-SiO2-H2O-HCl demonstrates that, under near-surface conditions, brucite and serpentine-group minerals dissolve congruently in high pH (basic) solutions while talc dissolves congruently in moderately basic to acidic solutions. In the system Na2O-Al2O3-SiO2-H2O-HCl, gibbsite dissolves congruently in moderately acidic to highly basic solutions and kaolinite and siliceous clay minerals dissolve congruently only in acidic solutions.  相似文献   

9.
The structure of H2O-saturated silicate melts and of silicate-saturated aqueous solutions, as well as that of supercritical silicate-rich aqueous liquids, has been characterized in-situ while the sample was at high temperature (to 800 °C) and pressure (up to 796 MPa). Structural information was obtained with confocal microRaman and with FTIR spectroscopy. Two Al-bearing glasses compositionally along the join Na2O•4SiO2-Na2O•4(NaAl)O2-H2O (5 and 10 mol% Al2O3, denoted NA5 and NA10) were used as starting materials. Fluids and melts were examined along pressure-temperature trajectories of isochores of H2O at nominal densities (from PVT properties of pure H2O) of 0.85 g/cm3 (NA10 experiments) and 0.86 g/cm3 (NA5 experiments) with the aluminosilicate + H2O sample contained in an externally-heated, Ir-gasketed hydrothermal diamond anvil cell.Molecular H2O (H2O°) and OH groups that form bonds with cations exist in all three phases. The OH/H2O° ratio is positively correlated with temperature and pressure (and, therefore, fugacity of H2O, fH2O) with (OH/H2O°)melt > (OH/H2O°)fluid at all pressures and temperatures. Structural units of Q3, Q2, Q1, and Q0 type occur together in fluids, in melts, and, when outside the two-phase melt + fluid boundary, in single-phase liquids. The abundance of Q0 and Q1 increases and Q2 and Q3 decrease with fH2O. Therefore, the NBO/T (nonbridging oxygen per tetrahedrally coordination cations), of melt is a positive function of fH2O. The NBO/T of silicate in coexisting aqueous fluid, although greater than in melt, is less sensitive to fH2O.The melt structural data are used to describe relationships between activity of H2O and melting phase relations of silicate systems at high pressure and temperature. The data were also combined with available partial molar configurational heat capacity of Qn-species in melts to illustrate how these quantities can be employed to estimate relationships between heat capacity of melts and their H2O content.  相似文献   

10.
Solubility experiments were performed at 30 kbars in the system Mg2SiO4-SiO2-H2O, and at 20 and 30 kbars on omphacitic pyroxene-water mixtures. They confirm that the solubility of the forsterite component in aqueous fluids remains rather low (up to 5 wt.%), whereas the solubility of the SiO2 component from solids of appropriate SiO2-rich compositions in the system Mg2SiO4-SiO2-H2O increases with temperature up to some 75% at 1,100° C. At this temperature a simplified harzburgite consisting of forsterite and enstatite coexists with a fluid containing about 35% (MgO+SiO2). Hydrous fluids coexisting with omphacitic clinopyroxenes leach sodium silicate component from the solid leaving less jadeitic pyroxenes behind. Most interestingly, the amount of sodium leached at constant temperature increases with decreasing pressure.Comparison of the results with previous solubility studies in the system K2O-MgO-Al2O3-SiO2-H2O indicates that hydrous fluids in the mantle must be alkaline rather than silicanormative. Alkali metasomatism caused by such fluids would lead to potassium enrichment in deeper portions of the upper mantle and to sodium enrichment at shallower levels, where amphiboles become stable. This K/Na fractionation in the upper mantle may explain the generation of K-rich or of Na-rich magmas through partial melting at different depths.  相似文献   

11.
Experiments were performed in the three-phase system high-silica rhyolite melt + low-salinity aqueous vapor + hydrosaline brine, to investigate the exchange equilibria for hydrogen, potassium, and sodium in magmatic-hydrothermal systems at 800 °C and 100 MPa, and 850 °C and 50 MPa. The K aqm/melt H,Na and K aqm/melt H,K for hydrogen-sodium exchange between a vapor + brine mixture and a silicate melt are inversely proportional to the total chloride concentration (ΣCl) in the vapor + brine mixture indicating that HCl/NaCl and HCl/KCl are higher in the low-salinity aqueous vapor relative to high-salinity brine. The equilibrium constants for vapor/melt and brine/melt exchange were extracted from regressions of K a q m / m e l t H , N a and K a q m / m e l t H , K versus the proportion of aqueous vapor relative to brine in the aqueous mixture (Faqv) at P and T, expressed as a function of ΣCl. No significant pressure effect on the empirically determined exchange constants was observed for the range of pressures investigated. Model equilibrium constants are: K aqv/melt H,Na(vapor/melt)=26(±1.3) at 100 MPa (800 °C), and 19( ± 7.0) at 50 MPa (850 °C); K aqv/melt H,K=14(±1.1) at 100 MPa (800 °C), and 24(±12) at 50 MPa (850 °C); K aqb/melt H,b(brine/melt)= 1.6(±0.7) at 100 MPa (800 °C), and 3.9(±2.3) at 50 MPa (850 °C); and K aqb/melt H,K=2.7(±1.2) at 100 MPa (800 °C) and 3.8(±2.3) at 50 MPa (850 °C). Values for K aqv/melt H,K and K aqb/melt H,K were used to calculate KCl/HCl in the aqueous vapor and brine as a function of melt aluminum saturation index (ASI: molar Al2O3/(K2O+Na2O+CaO) and pressure. The model log KCl/HCl values show that a change in melt ASI from peraluminous (ASI = 1.04) to moderately metaluminous (ASI = 1.01) shifts the cooling pathway (in temperature-log KCl/HCl space) of the aqueous vapor toward the andalusite+muscovite+K-feldspar reaction point. Received: 22 August 1996  / Accepted: 5 February 1997  相似文献   

12.
A series of single-phase alkali feldspars in the system Na2O-K2O-Al2O3-SiO2-H2O were crystallized from dehydrated gels at 500 bars and 800° C, in the presence of an aqueous vapor phase, quartz, and corundum. Twenty of these bulk samples were analyzed for K2O and Na2O by atomic absorption spectrophotometry. The unit cell parameters for 19 of these samples and 8 others in the series were obtained by least squares refinement of x-ray powder diffraction data collected with a focusing camera. Polynomial expressions giving the variation in unit cell parameters as a function of composition, in mol fraction potassium feldspar, were obtained, and compared with similar polynomial expressions developed from the avilable data on the sanidine-high albite series.This series of alkali feldspars is distinct from the previously studied series, but is closely related to the sanidine-high albite series. The differences illustrated by this series are principally in the higher values of the b and c unit cell edges, for a given Nor, and consequently higher unit cell or molar volume for a given Nor.Although the source of these differences may be related to crystalline solution with a hydronium (or oxonium) feldspar molecule, H3OAlSi3O8, a more probable source of these differences is that this feldspar series is less ordered in terms of Al/Si distribution than the sanidine-high albite series.  相似文献   

13.
Eleven new analyses and modes of comendite obsidians are presented, and compared with all available data on similar rocks. Most specimens are aphyric or contain only sparse phenocrysts, most commonly alkali feldspar. The oxides SiO2, Al2O3, Na2O and K2O total over ninety percent by weight in all analyses. Iron, as FeO, is the only other constituent rising above one percent by weight. When the analyses are projected into the system Na2O-K2O-Al2O3-SiO2, oceanic and continental samples group differently. Oceanic specimens have a compositional spread ranging from trachytic to the quartz-feldspar cotectic zone, consistent with derivation through a trachyte magma stem. Continental comendites show a strong correlation with the experimentally determined quartz-feldspar minima along a path of increasing peralkalinity. These differences presumably reflect the contrasting environments of magma generation, and suggest an origin by partial melting within the continental crust for the continental comendite obsidians.  相似文献   

14.
The heat capacities of 29 glasses and supercooled liquids in the Na2O-SiO2, Na2O-Al2O3-SiO2, Na2O-(FeO)-Fe2O3-SiO2, and Na2O-TiO2-SiO2 systems were measured in air from 328 to 998 K with a differential scanning calorimeter. The reproducibility of the data determined from multiple heat capacity runs on a single crystal MgO standard is within ± 1% of the accepted values at temperatures ≤ 800 K and within ± 1.5% between 800 and 1000 K. Within the resolution of the data, the heat capacities of sodium silicate and sodium aluminosilicate liquids are temperature independent. Heat capacity data in the supercooled liquid region for the sodium silicates and sodium aluminosilicates were combined and modelled assuming a linear compositional dependence. The derived values for the partial molar heat capacities of Na2O, Al2O3, and SiO2 are 112.35 ± 0.42, 153.16 ± 0.82, and 76.38 ± 0.20 J/gfw · K respectively. The partial molar heat capacities of Fe2O3 and TiO2 could not be determined in the same manner because the heat capacities of the Fe2O3- and TiO2-bearing sodium silicate melts showed varying degrees of negative temperature dependence. The negative temperature dependence to the configurational C P may be related to the occurrence of sub-microscopic domains (relatively polymerized and depolymerized) that break down to a more homogeneous melt structure with increasing temperature. Such an interpretation is consistent with data from in situ Raman, Mössbauer, and X-ray absorption fine structure (XAFS) spectroscopic studies on similar melts.  相似文献   

15.
Partitioning of Ca, Mn, Mg, and Fe2+ between olivine and melt has been used to examine the influence of energetically nonequivalent nonbridging oxygen in silicate melts. Partitioning experiments were conducted at ambient pressure in air and 1400°C with melts in equilibrium with forsterite-rich olivine (Fo >95 mol%). The main compositional variables of the melts were NBO/T and Na/(Na+Ca). In all melts, the main structural units were of Q4, Q3, and Q2 type with nonbridging oxygen, therefore, in the Q3 and Q2 units.For melts with high Q3/Q2-abundance ratio (corresponding to NBO/T near 1), increasing Na/(Na+Ca) [and Na/(Na+Ca+Mn+Mg+Fe2+)] results in a systematic decrease of the partition coefficients, KCaol/melt, KMnol/melt, KMgol/melt, and KFe2+ol/melt, because of ordering of the network-modifying Ca, Mn, Mg, and Fe2+ among nonbridging oxygen in Q3 and Q2 structural units. This decrease is more pronounced the smaller the ionic radius of the cation. With decreasing Q3/Q2 abundance ratio (less-polymerized melts) this effect becomes less pronounced.Activity-composition relations among network-modifying cations in silicate melts are, therefore, governed by availability of energetically nonequivalent nonbridging oxygen in individual Qn-species in the melt. As a result, any composition change that enhances abundance of highly depolymerized Qn-species will cause partition coefficients to decrease.  相似文献   

16.
The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2O2O3) and peralkaline (K2O>Al2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt.The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials Fe3+ Al–1 and Ca0.5K–1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous melts as both (CaO+K2O)/(CaO+K2O+Al2O3) and K2O/CaO decrease. These qualitative observations imply that minerals exhibiting these exchanges will also be similarly affected as liquid composition changes. Present address: Department of Geological Sciences, Virginia Tech, Blacksburg, VA 24061, USA  相似文献   

17.
Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 °C, 100 MPa and oxygen fugacity(f O2) buffered at approaching Ni–Ni O(NNO). Partition coefficients of Cu(DCu= cfluid/cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O·K2O), abbreviated as Al/Alk], Na/K mole ratios, and Si O2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ± 0.22 with the increase of Al/Alk mole ratios(ranging from 0.64 to 1.20)and Na/K mole ratios(ranging from 0.58 to 2.56). The experimental results also showed that DCuwas positively correlated with the HCl concentration of the starting fluid.The DCuwas independent of the Si O2 mole content in the range of Si O2 content considered. No DCuvalue was less than 1 in our experiments at 850 °C and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than themelt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl-fluid.  相似文献   

18.
The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450–1550?°C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca?<?Na?<?K. Some old controversial conceptions concerning the effect of potassium on Fe3+/Fe2+ ratio in simple model liquids are critically evaluated. An empirical equation is proposed to predict the ferric/ferrous ratio in SiO2–TiO2–Al2O3–FeO–Fe2O3–MgO–CaO–Na2O–K2O–P2O5 melts at air conditions.  相似文献   

19.
The structure of H2O-saturated silicate melts, coexisting silicate-saturated aqueous solutions, and supercritical silicate liquids in the system Na2O·4SiO2–H2O has been characterized with the sample at high temperature and pressure in a hydrothermal diamond anvil cell (HDAC). Structural information was obtained with confocal microRaman and with FTIR microscopy. Fluids and melts were examined along pressure-temperature trajectories defined by the isochores of H2O at nominal densities, ρfluid, (from EOS of pure H2O) of 0.90 and 0.78 g/cm3. With ρfluid = 0.78 g/cm3, water-saturated melt and silicate-saturated aqueous fluid coexist to the highest temperature (800 °C) and pressure (677 MPa), whereas with ρfluid = 0.90 g/cm3, a homogeneous single-phase liquid phase exists through the temperature and pressure range (25–800 °C, 0.1–1033 MPa). Less than 5 vol% quartz precipitates near 650 °C in both experimental series, thus driving Na/Si-ratios of melt + fluid phase assemblages to higher values than that of the Na2O·4SiO2 starting material.Molecular H2O (H2O°) and structurally bonded OH groups were observed in coexisting melts and fluids as well as in supercritical liquids. Their OH/(H2O)-ratio is positively correlated with temperature. The OH/(H2O)° in melts is greater than in coexisting fluids. Structural units of Q3, Q2, Q1, and Q0 type are observed in all phases under all conditions. An expression of the form, 12Q3 + 13H2O2Q2 + 6Q1 + 4Q0, describes the equilibrium among those structural units. This equilibrium shifts to the right with increasing pressure and temperature with a ΔH of the reaction near 425 kJ/mol.  相似文献   

20.
Partition coefficients (D) for Nb and Ta between rutile and haplogranite melts in the K2O-Al2O3-SiO2 system have been measured as functions of the K2O/Al2O3 ratio, the concentrations of Nb2O5 and Ta2O5, the temperature, in air and at 1 atmosphere pressure. The Ds increase in value as the K* [K2O/(K2O + Al2O3)] molar ratio continuously decreases from highly peralkaline [K* ∼ 0.9] to highly peraluminous [K* ∼ 0.35] melts. The D values increase more dramatically with a unit decrease in K* in peraluminous melts than in peralkaline melts. This compositional dependence of Ds can be explained by the high activity of NbAlO4 species in peraluminous melts and the high activity of KONb species (or low activity of NbAlO4 species) in peralkaline melts. A coupled substitution, Al+3 + Nb+5 (or Ta+5) = 2Ti+4, accounts for the Ds of Nb (Ta) being much greater in peraluminous melts than in peralkaline melts because this substitution allows Nb (Ta) to enter into the rutile structure more easily. The Ds of Ta between rutile and melt are greater than those of Nb at comparable concentrations because the molecular electronic polarizability of Ta is weaker than that of Nb. The Nb+5 with a large polarizing power forms a stronger covalent bond with oxygen than Ta+5 with a small polarizing power. The formation of the strong bond, Nb-O, distorts the rutile structure more severely than the weak bond, Ta-O; therefore, it is easier for Ta to partition into rutile than for Nb. These results imply that the utilization of the Nb/Ta ratio in liquid as a petrogenetic indicator in granitic melts must be done with caution if rutile (or other TiO2-rich phases) is a liquidus phase. The crystallization of rutile will increase the Nb/Ta ratio of the residual liquid because the Ds of Ta between rutile and melts are greater than those of Nb. Received: 28 December 1998 / Accepted 27 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号