首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对三维非静力中尺度模式ARPS的云降水微物理方案进行了改进,利用改进后的ARPS模式模拟了祁连山地区夏季的两个地形云个例,通过对各自模拟结果的对比分析并结合实况资料研究了夏季祁连山地区地形云的发展状况、动力场特征、降水特征以及云微物理结构特征。研究结果表明,地形云的发展受地形影响很大,地形的抬升促进了云和降水的发展,地形的作用也改变了地面降水特征,使云的宏、微观物理结构发生较大变化。  相似文献   

2.
本文是祁连山夏季地形云结构和微物理过程模拟的第Ⅱ部分.文中利用第I部分中祁连山夏季两个地形云降水个例的模拟结果, 详细分析了地形云及其降水发展期间云微物理过程的特征及变化, 并通过与平坦地面条件下模拟结果的对比, 研究了云发展过程中的地形影响.研究表明, 地形云中微物理过程的发展受地形影响很大, 冰相微物理过程明显增强;地形影响下云的主要降水机制也受到影响甚至被改变.  相似文献   

3.
本文是祁连山夏季地形云结构和微物理过程模拟的第II部分。文中利用第I部分中祁连山夏季两个地形云降水个例的模拟结果,详细分析了地形云及其降水发展期间云微物理过程的特征及变化,并通过与平坦地面条件下模拟结果的对比,研究了云发展过程中的地形影响。研究表明,地形云中微物理过程的发展受地形影响很大,冰相微物理过程明显增强;地形影响下云的主要降水机制也受到影响甚至被改变。  相似文献   

4.
利用ARPS(Advanced Regional Predictional System)中尺度数值模式,对2007年7月19日低涡天气背景下发生在祁连山区的一次比较典型的地形云降水过程中云和降水的宏微观结构特征进行了深入的模拟研究和分析。结果表明,ARPS模式能够较好地模拟出地面降水分布及其发展演变特征;祁连山北坡陡峭地形的抬升作用是祁连山云系降水的主要动力机制;祁连山地形作用下云和降水的微物理结构随云的不同发展阶段呈现出不同的特征。  相似文献   

5.
祁连山云系云微物理结构和人工增雨催化个例模拟研究   总被引:6,自引:1,他引:6  
陈小敏  刘奇俊  章建成 《气象》2007,33(7):33-43
改进了胡志晋、刘奇俊的云物理方案,并实现了与GRAPES模式的耦合;利用包括了新云物理方案的GRAPES模式对祁连山地区一次山区云降水过程进行了数值模拟,研究了祁连山地区云系的微物理结构,并开展了人工催化的数值试验研究。结果表明:(1)耦合的双参数方案能够较好的模拟此次降水范围、强度及云场分布的特点和规律;(2)新方案给出了祁连山云系的合理微观结构和它的特征;(3)播撒冰晶可以增加降雨,在云初始阶段播撒增雨范围较广,在云发展阶段播撒增雨范围较集中;(4)播撒冰晶后,云的动力结构发生了改变。  相似文献   

6.
积层混合云结构和云微物理的数值模拟   总被引:3,自引:0,他引:3  
对三维非静力中尺度模式ARPS的云微物理方案进行了改进,利用改进后的模式模拟了华北地区的积层混合云降水个例,通过对模拟结果的分析并结合实况资料研究了积层混合云的降水特征、云物理结构特征和微物理过程。结果表明,积层混合云降水分布不均匀,雨区中存在多个强降水中心,云系中微物理量在水平和垂直方向上分布都不均匀,积云中的垂直液态水积分含量大大高于层云中含量,此次降水冰相过程占主导地位,霰的融化是最主要的雨生成项。  相似文献   

7.
祁连山是我国西北地区重要的生态屏障,地形云是祁连山主要降水云系,加强对祁连山云微物理过程的认识,对科学有效开展人工增雨作业、改善生态环境具有重要意义。利用2020年8月29日祁连山一次地形云降水过程的飞机观测数据,研究祁连山地区夏季云降水过程的微物理特征。此次降水过程云系呈明显的分层结构,云底高度为4000 m,整层含水量较丰富,云水大值区出现在4500~5300 m高度,与云滴高浓度区对应,云水含量主要由粒子直径为15~20 μm的云滴粒子贡献。小云粒子和大云粒子平均浓度分别为7.54 cm-3和0.86 cm-3,有效直径平均值分别为11.02 μm和198.11 μm,呈现出浓度小、直径大的特征。云系翻越祁连山过程中南北坡云微物理特征有明显变化,北坡(背风坡)粒子浓度、直径和液态水含量明显大于南坡(迎风坡)。祁连山地区不同高度小云粒子谱呈单峰型分布,Gamma分布可较好拟合直径小于50 μm的云滴谱,直径大于50 μm的云粒子谱更符合幂指数分布。凝华和聚并是冰相层冰雪晶的增长机制,混合层冰晶增长以贝吉龙过程为主,并伴有凇附和聚并生长。  相似文献   

8.
利用区域中尺度模式ARPS(Advanced Regional Prediction System)模拟了华北西部复杂地形条件下发生在2010年9月18-22日的降水过程,并针对云分析方法对降水和温度预报的影响开展了敏感性试验.结果表明:①模式在复杂地形下有很好的适用性.24 h和48 h模拟结果,降水的起止时间、落区以及强降水中心的位置均和实况一致.24 h模拟降水的量级和实况接近,48 h的比实况偏大;②模式能准确模拟温度的变化,插值得到的5天内6个台站温度预报的平均绝对误差只有2.69℃;③云分析能显著提高模式初值的质量,特别是其中水物质的含量,从而可显著改善48 h强降水中心降水量偏大的状况,使模拟的降水场更接近于实况.但云分析对温度模拟结果的影响不明显.  相似文献   

9.
利用2007年祁连山地形云的观测试验资料,分析了祁连山夏季西南气流背景下地形云的演化过程,得到了祁连山地形云发展和演变的概念模型。(1)祁连山地形云的水汽主要分布在3500~6500m的范围内,对流层中层的西南气流将水汽由南向北输送到祁连山区。(2)祁连山区水汽比较丰沛,凝结高度和自由对流高度均较低,当湿气团抬升到凝结高度以上时对流有效位能很容易释放,形成有利于产生降水的云系。(3)祁连山每个山峰南北侧昼间的谷风会在山峰辐合抬升,众多山峰形成的祁连山群谷风的抬升作用下容易形成沿山脊排列的中β对流云带,在高空西南气流的推动下移到北侧,是造成北侧降水比南侧大的原因之一。  相似文献   

10.
利用部分改进了的中尺度数值模式MM5V3对2006年2月7~8日祁连山一次降雪过程进行了三重双向影响嵌套模拟研究,模式对雪带分布的模拟与实测基本吻合.重点分析了此次降雪过程中的热力动力特征和云的微物理结构,并通过地形敏感性试验,研究了祁连山地形对降雪的作用.结果表明:降雪过程中有低层西北湿冷气流向祁连山区输送水汽在山前形成大值区,气流除在祁连山周围绕流外同时沿祁连山北坡爬升.降雪前期空气饱和层和上升气流区比较深厚,为祁连山北坡降雪中心的形成提供了有利的动力热力条件,降雪后期有高空干冷下沉气流侵入使降雪减弱.这次过程为冷性稳定层云降雪过程,水成物含水量大值区也主要分布于祁连山北坡和山顶附近,冰晶和雪分布在6 km以下,在冷云顶存在0.06 g·kg-1的过冷云水.祁连山高大地形对大范围降雪落区无明显影响,但对祁连山北坡降雪中心形成有直接影响.降低地形高度后,山顶无法形成上升运动和云粒子,迎风坡云体发展减弱.地形对降雪增幅中心主要位于祁连山北坡,24 h最大增幅达3 mm.  相似文献   

11.
ADAS(ARPS Data Assim ilation System)云综合分析采用的是一种物理初值化技术。本文以ARPS(Advanced Regional Pred iction System)云综合分析为基础,设计了一组非常规资料的应用试验,应用ARPS模式对一次典型的短时强降水个例进行了数值模拟研究。结果表明:(1)在ADAS云分析中引入雷达及卫星资料可对湿度场的水平、垂直结构有一定的调整,改善了与对流降水有重要关系的高湿区的分析;(2)引入雷达和卫星资料的云综合分析,可以明显改善强降水发生时间相对迟缓以及模拟前期降水量偏少和降水覆盖面积偏小的现象,使模拟降水场与实际观测较为接近;(3)物理初值化能有效提取非常规资料中的云微物理信息,提高了模式初值质量,从而明显改善模式对强对流降水系统的短时模拟效果。  相似文献   

12.
云降水物理和人工影响天气研究进展和思考   总被引:4,自引:0,他引:4  
云降水物理和人工影响天气密不可分,云降水物理为人工影响天气提供理论基础,人工影响天气是云降水物理一个重要应用领域.目前我国人工影响天气规模、经费投入已达世界之最,人工影响天气工程正在建设之中.论文简要回顾了我国云物理研究和人工影响天气的发展过程,评述研究工作取得的进展,思考我国人工影响天气在新形势下进一步的发展的问题,显得尤为重要.几十年来,我国开展了一系列云雾降水的外场观测研究和人工影响天气的外场试验研究,云和降水物理以及人工影响天气的理论和技术研究不断取得进展,数值云模式和中尺度模式的模拟研究水平有了长足的进步,在云和降水物理过程和降水机制研究、云的微物理结构、云水资源和人工增雨潜力评估、催化条件预测、催化剂和催化技术等方面取得了显著进展.论文最后指出,目前的人工影响天气需要加强人工影响天气核心技术研究,并提出了需要进一步研究的云和降水物理中的有关科学问题.  相似文献   

13.
2011年,云降水物理与人工影响天气研究主要在暖云数值模式研制及模拟、云物理过程对降水影响、冰雹物理过程、效果检验、南方冻雨的微物理过程以及华北气溶胶特征等方面取得如下研究成果。  相似文献   

14.
气溶胶对秦岭山脉地形云降水的影响   总被引:5,自引:1,他引:4  
徐小红  余兴  戴进 《气象》2009,35(1):37-47
以华山站为影响站,其周围华阴、渭南、西安为对比站,通过对影响站与对比站降水之比--地形强化因子(Ro)的变化趋势以及Ro与能见度变化关系的分析,研究了气溶胶对秦岭地形云降水的影响.结果表明:有观测以来Ro逐年递减,1980年后Ro递减更快,减幅达20%;Ro的减小趋势与能见度递减、气溶胶递增相吻合,说明气溶胶的增加抑制了地形云降水;华山1980年后的年平均雨量比1980年前减少了15%,达132mm,而平原地区的减少量不超过3%(16mm).分析气溶胶抑制地形云降水的物理过程发现,Ro的递减主要是减少了中小雨(日雨量小于30mm)的天数,而对大于30mm的降水影响较小,说明气溶胶对浅薄的生命期较短的地形云降水的抑制作用更明显;在以动力强迫抬升为主的春秋季,气溶胶对地形云降水的抑制作用明显强于平原地区,1980--2004年间降水减少了20%~30%;在热力作用下,气溶胶对地形云降水的抑制作用与平原地区相当.  相似文献   

15.
孙晶  楼小凤  胡志晋 《高原气象》2009,28(3):485-495
利用部分改进了的中尺度数值模式MM5V3对2006年2月7~8日祁连山一次降雪过程进行了三重双向影响嵌套模拟研究, 模式对雪带分布的模拟与实测基本吻合。重点分析了此次降雪过程中的热力动力特征和云的微物理结构, 并通过地形敏感性试验, 研究了祁连山地形对降雪的作用。结果表明: 降雪过程中有低层西北湿冷气流向祁连山区输送水汽在山前形成大值区, 气流除在祁连山周围绕流外同时沿祁连山北坡爬升, 降雪前期空气饱和层和上升气流区比较深厚, 为祁连山北坡降雪中心的形成提供了有利的动力热力条件, 降雪后期有高空干冷下沉气流侵入使降雪减弱。这次过程为冷性稳定层云降雪过程, 水成物含水量大值区也主要分布于祁连山北坡和山顶附近, 冰晶和雪分布在6 km以下, 在冷云顶存在0.06 g·kg-1的过冷云水。祁连山高大地形对大范围降雪落区无明显影响, 但对祁连山北坡降雪中心形成有直接影响。降低地形高度后, 山顶无法形成上升运动和云粒子, 迎风坡云体发展减弱。地形对降雪增幅中心主要位于祁连山北坡, 24 h最大增幅达3 mm。  相似文献   

16.
地形降水试验和背风回流降水机制   总被引:7,自引:2,他引:7  
李子良 《气象》2006,32(5):10-15
利用中尺度数值模式(ARPS模式)研究了湿气流过山脉地形和地形降水的产生机制。研究结果表明,地形降水是水汽、气流和地形相互作用而形成的。小山脉地形降水主要发生在山脉的迎风坡,表现出典型的迎风降水和背风雨影特征。而回流降水天气是湿气流过大的山脉地形的产物,大的山脉地形有利于风切变临界层的产生,地形降水并不只是简单的上坡降水,还有背风回流和背风波降水机制。  相似文献   

17.
地形动力作用对华北暴雨和云系影响的数值研究   总被引:9,自引:4,他引:5       下载免费PDF全文
廖菲  胡娅敏  洪延超 《高原气象》2009,28(1):115-126
为了进一步研究地形对华北暴雨的影响,本文从云微物理学的角度出发,选取了2005年7月22~24日的一次华北暴雨过程为研究对象,利用中尺度数值模式ARPS,通过地形高度敏感性试验,详细讨论了地形高度变化对流场、云及降水微物理过程的影响.结果表明:地形高度变化对水平和垂直流场的大小和分布都有较大影响;地形高度增加有利于迎风坡附近水平风场辐合和垂直上升运动发展,这对云的垂直和水平发展影响都很大,尤其是对中高层云的发展影响最明显,并且能明显扩大地面降水的分布范围,地面最大降水量也有所增多.这主要是由于地形高度增加后能促进中高层云水的产生,尤其是零度层之上的过冷云水含量的增多,这大大促进了冰相粒子(雪和霰)的增多,从而使得以冷云过程为主的此次降水过程中,冰相粒子融化形成的雨水含量增多.虽然地形高度的增加会抑制云系发展前期的暖云过程,但对冷云过程有持续加强作用,而且不会明显改变云内降水的形成机制,冷云过程依然是降水的最大贡献项,总体上促进了云和降水的发展.  相似文献   

18.
地形对华北地区夏季降水影响的数值模拟研究   总被引:37,自引:10,他引:27  
范广洲  吕世华 《高原气象》1999,18(4):659-667
行星大气中地形效应的研究一直是人们十分重视的问题。本语文利用引进的NCAR-RegCM2模式就地形对华北地区夏季降水的影响进行了数值模拟研究。结果表明,华北地区西部和北部的山脉地形对华北地区夏季降水有着非常重要的影响。尤其是对一些局地地区,甚至起到了决定性的作用。当降低地形高度时,华北地区夏季降水将明显减少。其物理机制可能主要有两点,一是降低地莆高度后,使华北地区迎风坡地形抬升作用减弱,从而减少了  相似文献   

19.
赵震  雷恒池 《大气科学》2008,32(2):323-234
利用MM5中增加的双参数显式云物理方案模拟了西北地区一次层状云降水过程,模拟结果显示对小雨的预报评分较高,对中雨以上评分低而且位置有一定偏差,即对层状云降水模拟效果较好。模式中增加了雷达反射率的计算,与延安站雷达RHI回波相比较,模拟的回波结构基本符合层状云回波特征,存在0℃层亮带。采用三层模型解释模拟的层状云降水形成机制和过程:第一层为冰晶区,无过冷水;第二层存在过冷水,为各种冰相粒子增长区,第一层和第二层的分界不固定;第三层和第二层的分界在0℃,为暖云。第一层对第二层播种冰晶,第二层为第一层播种下的冰晶供给过冷水,使冰晶快速增长;第二层对第三层播种雪和霰,使其在第三层融化成雨,第三层同时消耗云水。模拟给出了三层模型层状云场的空间结构,延安站不同时刻微物理量垂直分布和各种水凝物粒子的生成源项分析揭示了三层模型降水形成机制和主要微物理过程。三层模型可以完整和全面地解释层状云降水形成机制和过程。  相似文献   

20.
地形云作为最具有前景和可行的人工影响云系,受到人工影响天气工作者和研究人员的关注。本文分析了国内外地形云催化增雨野外科学试验的历史进程,总结了野外科学试验中取得的成果,梳理了在地形云催化增雨试验中需关注的几个关键科学问题,包括对地形云自然降水过程的分析、地形云系统中过冷水在云内的分布、山地云系的微物理过程演变特征及其与中尺度动力结构的关联,介绍了宁夏开展地形云野外科学试验的实践,提出了加快地形云催化野外科学试验,提高地形云云水资源开发利用的对策及建议。为解决中国西北地区干旱问题,推动黄河流域生态环境保护及高质量发展提供了一种思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号