首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The volume of Antarctic ice at the Last Glacial Maximum is a key factor for calculating the past contribution of melting ice sheets to Late Pleistocene global sea level change. At present, there are large uncertainties in our knowledge of the extent and thickness of the formerly expanded Antarctic ice sheets, and in the timing of their release as meltwater into the world’s oceans. This paper reviews the four main approaches to determining former Antarctic ice volume, namely glacial geology, glacio-isostatic studies, glaciological modelling, and ice core analysis and attempts to reconcile these to give a ‘best estimate’ for ice volume. In the Ross Sea there was a major expansion of grounded ice at the Last Glacial Maximum, accounting for 2.3–3.2 m of global sea level. At some time in the Weddell Sea a large grounded ice sheet corresponding to c. 2.7 m of global sea level extended to the shelf break. However, this ice expansion has not yet been confidently dated and may not relate to the Last Glacial Maximum. Around East Antarctica there was thickening and advance offshore of ice in coastal regions. Ice core evidence suggests that the interior of East Antarctica was either close to its present elevation or thinner during the last glacial so the effect of East Antarctica on sea level depends on the net balance between marginal thickening and interior thinning. Suggested East Antarctic contributions vary from a 3–5.5 m lowering to a 0.64 m rise in global sea level. The Antarctic Peninsula ice sheet thickened and extended offshore at the Last Glacial Maximum, with a sea level equivalent contribution of c. 1.7 m. Thus, the Antarctic ice sheets accounted for between 6.1 and 13.1 m of global sea level fall at the Last Glacial Maximum. This is substantially less than has been suggested by most previous studies but the maximum figure matches well with one modelling estimate. The timing of Antarctic deglaciation is not well known. In the Ross Sea, terrestrial evidence suggests deglaciation may have begun at c. 13,000 yr BP1 but that grounded ice persisted until c. 6,500 yr BP. Marine evidence suggests the western Ross Sea was deglaciated by c. 11,500 yr BP. Deglaciation of the Weddell Sea is poorly constrained. Grounded ice in the northern Antarctic Peninsula had retreated by c. 13,000 yr BP, and further south deglaciation occurred sometime prior to c. 6,000 yr BP. Many parts of coastal East Antarctica apparently escaped glaciation at the LGM, but in those areas that were ice-covered deglaciation was underway by 10,000 yr BP. With existing data, the timing of deglaciation shows no firm relation to northern hemisphere-driven sea level rise. This is probably due partly to lack of Antarctic dating evidence but also to the combined influence of several forcing mechanisms acting during deglaciation.  相似文献   

2.
Deglaciation chronologies for some sectors of former ice sheets are relatively poorly constrained because of the paucity of features or materials traditionally used to constrain the timing of deglaciation. In areas without good deglaciation varve chronologies and/or without widespread occurrence of material that indicates the start of earliest organic radiocarbon accumulations suitable for radiocarbon dating, typically only general patterns and chronologies of deglaciation have been deduced. However, mid-latitude ice sheets that had warm-based conditions close to their margins often produced distinctive deglaciation landform assemblages, including eskers, deltas, meltwater channels and aligned lineation systems. Because these features were formed or significantly altered during the last glaciation, boulder or bedrock samples from them have the potential to yield reliable deglaciation ages using terrestrial cosmogenic nuclides (TCN) for exposure age dating. Here we present the results of a methodological study designed to examine the consistency of TCN-based deglaciation ages from a range of deglaciation landforms at a site in northern Norway. The strong coherence between exposure ages across several landforms indicates great potential for using TCN techniques on features such as eskers, deltas and meltwater channels to enhance the temporal resolution of ice-sheet deglaciation chronologies over a range of spatial scales.  相似文献   

3.
Glacial meltwater channels are incised into bedrock and diamicton along much of the length of the Mid-Cheshire Ridge. Detailed mapping of one such system near the town of Helsby reveals a dendritic channel network developed in the opposite direction to the regional ice flow during the last (Late Devensian) glaciation. The channels formed subglacially, under atmospheric and not hydrostatic pressure, presumably as the ice sheet downwasted during deglaciation. Morphological and palaeohydraulic evidence suggests that not all of the network was necessarily active contemporaneously. Former water levels in the channels can be estimated due to the presence of bar surfaces, giving a calculated palaeodischarge of at least 111 m3 s−1. The ablation rates required to account for this large discharge are an order of magnitude greater than those obtained from theoretical calculations and those observed in modern glacial environments. This implies that some form of high-magnitude discharge, such as a seasonal flood event, must have taken place in this area during deglaciation. This picture of the Late Devensian ice sheet suggests that during recession the ice sheet was static, crevassed and relatively thin (<50 m). This study also shows that there is no simple relationship between meltwater channel direction and ice dynamics, and that care is required when using the former to make inferences about the latter. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Pleistocene lateral meltwater channels are commonly used as evidence of cold-based or polythermal ice. However, lateral meltwater channel formation has been observed for >40 years along the margins of a rapidly thinning temperate glacier in Glacier Bay, Alaska. Flights of nested linear lateral meltwater channels and in-and-out channels have formed on the sides of emerging nunataks. Nested channels at Burroughs Glacier are up to 200 m long; they are good proxies for the slope of the ice margin along the land surface and are terminated by subglacial chutes. A perched water table associated with precipitation and high ablation rates in the temperate ice causes surface meltwater to flow toward the margin above less permeable ice. The water flows along the margin and erodes lateral meltwater channels until a subglacial chute carries the water into the subglacial water system. Rates of channel formation range from 0 to 8 channels/year. Spacing and rates of channel formation are controlled by the land-surface slope, ablation rate, erodibility of the substrate and stream discharge. Because lateral meltwater channels have been observed forming along a temperate glacier margin, care must be exercised when using the presence of lateral meltwater channels as definitive evidence of cold-based or polythermal ice.  相似文献   

6.
Mapping of glacial meltwater channels along the length of the 25-km Mid-Cheshire Ridge reveals evidence for four distinctive channel morphologies, which are used to establish the pattern of meltwater flow during the Late Devensian glaciation. A key characteristic of all channels is an abrupt change in morphology between inception on the Mid-Cheshire Ridge and the downstream continuation on the surrounding Cheshire Plain, with large reductions in channel cross-sectional area at this point. The interpretation of this evidence is that meltwater flowing off the bedrock ridge was absorbed into a layer of permeable sediment beneath the Late Devensian ice sheet. This permeable sediment is significant because it would have acted as a deforming layer beneath the former ice sheet in this area. Reconstruction of the Late Devensian ice sheet based on information from the meltwater channels and using values of shear stresses typical of ice sheets resting on deformable beds (ca. 20 kPa) suggests an ice surface elevation over the Irish Sea of ca. 700 m. This value is considerably less than previous estimates of the vertical extent of the ice sheet of ca. 1000–1200 m and has important implications for the rapidity and mode of deglaciation during the Late Devensian. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
The Late Westphalian to Artinskian glaciomarine deposits of the Karoo and Kalahari basins of southern Africa consist of massive and stratified diamictite, mudrock with ice-rafted material, sandstone, silty rhythmite, shale and subordinate conglomerate forming a cyclic succession recognizable across both basins. A complete cycle comprises a resistant basal unit of apparently massive diamictite overlain by softer, bedded stratified diamictite, sandstone and mudrock with a total thickness of as much as 350 m. Four major cycles are observed each separated by bounding surfaces. Lateral facies changes are present in some cycles. The massive diamictites formed as aprons and fans in front of the ice-grounding line, whereas the stratified diamictites represent more distal debris-flow fans. The sandstones originated in different environments as turbidite sands, small subaqueous outwash channel sands and delta front sands. The rhythmites and mudrock represent blanket deposits derived from turbid meltwater plumes. Cycles represent deglaciation sequences which formed during ice retreat phases caused by eustatic changes in the Karoo and Kalahari basins. Evidence for shorter-term fluctuation of the ice margin is present within the major advance-retreat cycles. Hardly any sediment was deposited during lowstand ice sheet expansion, whereas a deglaciation sequence was laid down during a sea-level rise and ice margin retreat with the volume of meltwater and sediment input depending on temporary stillstands of the ice margin during the retreat phase. The duration of the cycles is between 9 and 11 Ma suggesting major global tectono-eustatic events. Smaller cycles probably linked to orbital forcing were superimposed on the longer-term events. A sequence stratigraphic approach using the stacking of deglaciation sequences with the ice margin advance phases forming bounding surfaces, can be a tool in the framework analysis of ancient glaciomarine basin fills.  相似文献   

8.
The Liard Lobe formed a part of the north‐eastern sector of the Cordilleran Ice Sheet and drained ice from accumulation areas in the Selwyn, Pelly, Cassiar and Skeena mountains. This study reconstructs the ice retreat pattern of the Liard Lobe during the last deglaciation from the glacial landform record that comprises glacial lineations and landforms of the meltwater system such as eskers, meltwater channels, perched deltas and outwash fans. The spatial distribution of these landforms defines the successive configurations of the ice sheet during the deglaciation. The Liard Lobe retreated to the west and south‐west across the Hyland Highland from its local Last Glacial Maximum position in the south‐eastern Mackenzie Mountains where it coalesced with the Laurentide Ice Sheet. Retreat across the Liard Lowland is evidenced by large esker complexes that stretch across the Liard Lowland cutting across the contemporary drainage network. Ice margin positions from the late stage of deglaciation are reconstructed locally at the foot of the Cassiar Mountains and further up‐valley in an eastern‐facing valley of the Cassiar Mountains. The presented landform record indicates that the deglaciation of the Liard Lobe was accomplished mainly by active ice retreat and that ice stagnation played a minor role in the deglaciation of this region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The Cordilleran Ice Sheet (CIS) covered much of the mountainous northwestern part of North America at least several times during the Pleistocene. The pattern and timing of its growth and decay are, however, poorly understood. Here, we present a reconstruction of the pattern of ice‐sheet retreat in central British Columbia at the end of the last glaciation based on a palaeoglaciological interpretation of ice‐marginal meltwater channels, eskers and deltas mapped from satellite imagery and digital elevation models. A consistent spatial pattern of high‐elevation (1600–2400 m a.s.l.), ice‐marginal meltwater channels is evident across central British Columbia. These landforms indicate the presence of ice domes over the Skeena Mountains and the central Coast Mountains early during deglaciation. Ice sourced in the Coast Mountains remained dominant over the southern and east‐central parts of the Interior Plateau during deglaciation. Our reconstruction shows a successive westward retreat of the ice margin from the western foot of the Rocky Mountains, accompanied by the formation and rapid evolution of a glacial lake in the upper Fraser River basin. The final stage of deglaciation is characterized by the frontal retreat of ice lobes through the valleys of the Skeena and Omineca Mountains and by the formation of large esker systems in the most prominent topographic lows of the Interior Plateau. We conclude that the CIS underwent a large‐scale reconfiguration early during deglaciation and was subsequently diminished by thinning and complex frontal retreat towards the Coast Mountains.  相似文献   

12.
In central and northern Sweden, glacial sediments and landforms, formed during Early and Middle Weichselian stadials and their transition into interstadials, are often preserved in spite of having been overridden by later glacial advances. This study presents an OSL‐dated glacial stratigraphy from Idre in west‐central Sweden, expanding the area in which Middle Weichselian ice‐free conditions have been identified. Three sedimentary units were identified, with the lowermost unit consisting of glaciolacustrine sand, deposited in a stagnant water‐body. Nine OSL samples gave ages ranging from 54 to 41 ka, suggesting deposition during a deglacial phase in MIS 3. Normal faults and silt veins, formed after deposition, indicate that the area was ice‐free for a prolonged period, enabling the melting of buried stagnant ice. Above an erosional unconformity is a sediment unit characterized by gravels and sands deposited in a proximal braided‐river environment. OSL ages range from 180 to 41 ka, indicating poor sediment bleaching during deposition. We thus consider them to give a maximum age of the sedimentation, indicating deposition at or after 41 ka. The uppermost unit consists of a stacked succession of subglacial traction tills and glaciotectonite beds, representing the Late Weichselian glaciation of the area, probably during the inception phase with a wet‐based glacier regime. At the last deglaciation of the area there was extensive meltwater erosion, eroding all sedimentary units and forming a landscape with terraces and channels, and erosional remnants of the uppermost diamict as free‐standing hummocks.  相似文献   

13.
Buried channels cut to a depth of over 100m into the underlying substratum of North Germany are almost exclusively of Elsterian age. Evaluation of geophysical well logs in the Hamburg area for the first time allows the construction of detailed longitudinal and transverse profiles. It can be shown that an apparently chaotic infill known from borehole records in some cases is actually a regular sedimentary sequence, fining from proximal to distal. Channel formation seems to have been the result of catastrophic meltwater release in the marginal parts of the ice sheet. The channel infill reflects these episodic outbursts of meltwater. During deglaciation, the channel remnants became infilled with fine sediments. The channels ceased to exist as morphologically detectable forms at the end of the Holsteinian Stage.  相似文献   

14.
The mass balance of the Antarctic Ice Sheet has been calculated based on instrumental estimates of the grounded ice discharge and snow accumulation data. The boundaries and sectional areas of the main ice catchment basins in West and East Antarctica have been determined, and the data on the grounded ice discharge and snow accumulation in these basins have been systematized. The intensity of accumulation and ablation processes in Antarctica has noticeably increased over the last 50 years. The mass balance of the ice sheet in East Antarctica has been and remains positive, while in West Antarctica it was positive in the middle of the last century and has become negative by now. The mass balance of the entire Antarctic Ice Sheet has been and remains positive, while the mass growth has noticeably decreased over the last 50 years.  相似文献   

15.
The foreground of Elisebreen, a retreating valley glacier in West Svalbard, exhibits a well-preserved assemblage of subglacial landforms including ice-flow parallel ridges (flutings), ice-flow oblique ridges (crevasse-fill features), and meandering ridges (infill of basal meltwater conduits). Other landforms are thrust-block moraine, hummocky terrain, and drumlinoid hills. We argue in agreement with geomorphological models that this landform assemblage was generated by ice-flow instability, possibly a surge, which took place in the past when the ice was thicker and the bed warmer. The surge likely occurred due to elevated pore-water pressure in a thin layer of thawed and water-saturated till that separated glacier ice from a frozen substratum. Termination may have been caused by a combination of water drainage and loss of lubricating sediment. Sedimentological investigations indicate that key landforms may be formed by weak till oozing into basal cavities and crevasses, opening in response to accelerated ice flow, and into water conduits abandoned during rearrangement of the basal water system. Today, Elisebreen may no longer have surge potential due to its diminished size. The ability to identify ice-flow instability from geomorphological criteria is important in deglaciated terrain as well as in regions where ice dynamics are adapting to climate change.  相似文献   

16.
Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (~15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr?1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr?1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.  相似文献   

17.
Late-Pleistocene deposits in north County Mayo were deposited in three main glacigenic environments. 1. Drumlins and basal tills were formed when ice moved from the Irish lowlands and local mountain catchments into Donegal Bay. 2. Gilbert-type deltas accumulated up to 80m I.O.D. on the lowlands and subaqueous moraines formed across minor valleys when marine-based ice grounded inland. 3. A thick drape of fossiliferous glaciomarine mud along the coastal fringe was deposited from meltwater plumes and by ice-rafting immediately outside of these ice limits. The muds contain an Elphidium clavatum-dominated, low-diversity microfauna which is characteristic of cold-water conditions adjacent to glacier termini. Valves of Macoma calcarea from the mud have been 14C dated at 16940 ± 120 and 17300 ± 100 BP. The high-level delta complex was deposited from tidewater glaciers in a peripheral depression adjacent to the drumlin ice limits of north County Mayo. Although the field evidence cannot be used to determine former sea level history with any accuracy, it poses general problems for sea level history and isostatic effects of the last major ice sheet in the west of Ireland. Raised glaciomarine sequences commonly occur in close association with drumlin ice limits elsewhere in Ireland and represent marine transgressions prior to glacial unloading. It is suggested that the magnitudes and patterns of crustal depression are greater and geometrically more complex at the margins of ice sheets in Ireland than hitherto realised.  相似文献   

18.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

19.
We report here on cirque infills mapped in the Khibiny Mountains, Kola Peninsula, Russia. Cirque infills are morainic deposits located near the headwalls of valleys and cirques. Their location and shape, often with concave margins towards the valley side, indicate that they were deposited by ice flowing up‐valley, into the mountains, rather than by local glaciers. We suggest that they formed during the last deglaciation, when Khibiny was a nunatak and Fennoscandian ice sheet lobes extended into valleys and cirques of the massif. The formation of cirque infills is probably more related to ice sheet dynamic factors, occurring when the ice margin retreated from the cirques, than to climate‐driven interruption in the ice‐marginal retreat. Glacial conditions similar to those prevalent when the Khibiny cirque infills were formed, occur today in Antarctica where the ice sheets engulf nunatak ranges. In Heimefrontfjella, Antarctica, the formation of supraglacial moraines at the head of cirques are linked to blue‐ice conditions, indicating locally low accumulation rates, a dry continental climate and sublimation dominated ablation. We suggest that these Antarctic moraines are modern analogues of cirque infills on the Kola Peninsula, and possibly, that the cirque infills may be used as palaeoenvironmental indicators. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号