首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Current seismic design requirements for special concentrically braced frames (SCBFs) in chevron configurations require that the beams supporting the braces be designed to resist the demands resulting from the simultaneous yielding of the tension brace and degraded, post-buckling strength of the compression brace. Recent research, including large-scale experiments and detailed finite-element analyses, has demonstrated that limited beam yielding is not detrimental to chevron braced frame behavior and actually increases the story drift at which the braces fracture. These findings have resulted in new expressions for computing beam demands in chevron SCBFs that reduce the demand in the tension brace to be equal to the expected compressive capacity at buckling of the compression brace. In turn, the resultant force on the beam is reduced as is the required size of the beam. Further study was undertaken to investigate the seismic performance of buildings with SCBFs, including chevron SCBFs with and without yielding beams and X-braced frames. Prototype three- and nine-story braced frames were designed using all three framing systems, that is, chevron, chevron with yielding beams, and X SCBFs, resulting in six building frames. The nonlinear dynamic response was studied for ground motions simulating two different seismic hazard levels. The results were used to characterize the seismic performance in terms of the probability of salient damage states including brace fracture, beam vertical deformation, and collapse. The results demonstrate that the seismic performance of chevron SCBFs with limited beam yielding performs as well as or better than the conventionally designed chevron and X SCBFs.  相似文献   

2.
Braced frames are one of the most economical and efficient seismic resisting systems yet few full‐scale tests exist. A recent research project, funded by the National Science Foundation (NSF), seeks to fill this gap by developing high‐resolution data of improved seismic resisting braced frame systems. As part of this study, three full‐scale, two‐story concentrically braced frames in the multi‐story X‐braced configuration were tested. The experiments examined all levels of system performance, up to and including fracture of multiple braces in the frame. Although the past research suggests very limited ductility of SCBFs with HSS rectangular tubes for braces recent one‐story tests with improved gusset plate designs suggest otherwise. The frame designs used AISC SCBF standards and two of these frames designs also employed new concepts developed for gusset plate connection design. Two specimens employed HSS rectangular tubes for bracing, and the third specimen had wide flange braces. Two specimens had rectangular gusset plates and the third had tapered gusset plates. The HSS tubes achieved multiple cycles at maximum story drift ratios greater than 2% before brace fracture with the improved connection design methods. Frames with wide flange braces achieved multiple cycles at maximum story drift greater than 2.5% before brace fracture. Inelastic deformation was distributed between the two stories with the multi‐story X‐brace configuration and top story loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The paper is concerned with the seismic design of steel‐braced frames in which the braces are configured in a chevron pattern. According to EuroCode 8 (EC8), the behaviour factor q, which allows for the trade‐off between the strength and ductility, is set at 2.5 for chevron‐braced frames, while 6.5 is assigned for most ductile steel moment‐resisting frames. Strength deterioration in post‐buckling regime varies with the brace's slenderness, but EC8 adopts a unique q value irrespective of the brace slenderness. The study focuses on reevaluation of the q value adequate for the seismic design of chevron‐braced frames. The present EC8 method for the calculation of brace strength supplies significantly different elastic stiffnesses and actual strengths for different values of brace slenderness. A new method to estimate the strength of a chevron brace pair is proposed, in which the yield strength (for the brace in tension) and the post‐buckling strength (for the brace in compression) are considered. The new method ensures an identical elastic stiffness and a similar strength regardless of the brace slenderness. The advantage of the proposed method over the conventional EC8 method is demonstrated for the capacity of the proposed method to control the maximum inter‐storey drift. The q values adequate for the chevron‐braced frames are examined in reference to the maximum inter‐storey drifts sustained by most ductile moment‐resisting frames. When the proposed method is employed for strength calculation, the q value of 3.5 is found to be reasonable. It is notable that the proposed method does not require larger cross‐sections for the braces compared to the cross‐sections required for the present EC8 method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Eurocode 8 (EC8) stipulates design methods for frames with diagonal braces and for chevron braced frames, which differ as regards the numerical model adopted, the value of the behavior factor q and the estimation of the lateral strength provided by braces. Instead, in this paper, the use of the same design method is suggested for both types of concentrically braced frames. The design method is a generalization of the one proposed for chevron braced frames in a previous study. A numerical investigation is conducted to assess the reliability of this design method. A set of concentrically braced frames is designed according to the EC8 and proposed design methods. The seismic response of these frames is determined by nonlinear dynamic analysis. Finally, it is demonstrated that the proposed design method is equivalent to those provided by EC8, because it can ensure the same level of structural safety which would be expected when using EC8. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Steel plate shear walls (SPSWs) are used as lateral force‐resisting systems in new and retrofitted structures in high‐seismic regions. Various international codes recommend the design of SPSWs assuming the entire lateral load to be resisted by the infill plates. Such a design procedure results in significant overstrength leading to uneconomical and inefficient use of materials. This study is focused on the estimation of contribution of boundary elements in resisting the lateral force considering their interaction with the web plates of SPSW systems. Initially, the relative contribution of web plates and boundary frames is computed for a single‐bay single‐story frame with varying rigidity and end connections of boundary elements. Nonlinear static analyses are carried out for the analytical models in OpenSees platform to quantify this contribution. Later, this study is extended to the code‐based designed three‐story, six‐story, and nine‐story SPSWs of varying aspect ratios. Based on the results obtained, a new design procedure is proposed taking the lateral strengths of the boundary frames into account. Nonlinear time‐history analyses are conducted for 40 recorded ground motions representing the design basis earthquake and maximum considered earthquake hazard levels to compare the interstory and residual drift response and yield mechanisms of SPSWs designed as per current practice and the proposed methodology. Finally, an expression has been proposed to predict the lateral force contribution of the infill plate and the boundary frame of SPSWs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Quasi-static testing is one of the most commonly used experimental methods for examining the seismic performance of structural members. However, consistent loading protocols for experimental seismic qualification of members in emerging steel frames such as self-centering braced frames (SCBFs) as well as in some conventional ones including buckling-restrained braced frames (BRBFs) are still lacking. This paper aims to propose standardized loading protocols based on time-history dynamic analysis on a series of prototype building frames, including steel SCBFs, BRBFs, and moment-resisting frames (MRFs), where both far-field and near-fault earthquakes are considered. The methodology for the development of the loading protocols involves ground motion selection and scaling, design and analysis of prototype buildings, analysis results processing, and rainflow cycle counting, together with extra justification steps. The proposed loading protocols are consistently derived based on the MCE-level seismic hazard and 84th percentile values of key seismic demand parameters. These parameters are number of damaging cycles Nt, maximum inter-story drift θmax, inter-story drift range Δθi, sum of inter-story drift range ΣΔθi, and residual inter-story drift θr. The analysis confirms the variations in these seismic demands imposed on the different structural systems under different types of ground motions, highlighting the necessity of developing separate loading protocols for the different cases. The assumptions, decisions, and judgments made during the development of the loading protocols are elaborated, and the conditions and restrictions are outlined. The rationality of the proposed loading protocols is further justified through demonstrating the cumulative distribution function and energy dissipation demand of the systems.  相似文献   

8.
耗能梁段作为偏心支撑结构的耗能元件,在大震作用下通过弹塑性变形吸收地震能量,保护主体结构处于弹性受力状态。现行规范基于强度的设计理论,为了保证耗能梁段进入塑性或破坏,梁柱构件需要进行放大内力设计,导致截面过大,而且基于强度的设计方法很难保证结构的整体破坏状态。目前,抗震设计越来越重视基于性能的设计思想,该方法能够评估结构的弹塑性反应。对于高强钢组合偏心支撑,其中耗能梁段和支撑采用Q345钢,框架梁柱采用Q460或者Q690高强度钢材,高强钢不仅带来良好的经济效益,而且能够推广高强钢在抗震设防区的应用。利用基于性能设计方法设计了4种不同形式的高强钢组合偏心支撑钢框架,包括K形、Y形、V形和D形,考虑4层、8层、12层和16层的影响。通过Pushover分析和非线性时程分析评估该结构的抗震性能,研究结果表明:4种形式的高强钢组合偏心支撑钢框架具有类似的抗震性能,在罕遇地震作用下,几乎所有耗能梁段均参与耗能,而且层间侧移与耗能梁段转角沿高度分布较为均匀。其中:D形偏心支撑具有最大的抗侧刚度,但延性较差,而Y形偏心支撑的抗侧刚度最弱,但延性最佳。  相似文献   

9.
In the recent past, suspended zipper‐braced frames were proposed to avoid one‐storey collapse mechanisms and dynamic instability under severe ground motions. In this paper, the design procedure suggested by Yang et al. is first slightly modified to conform to the design approach and capacity design rules stipulated in Eurocode 8 for concentrically braced frames. The procedure is applied to a set of suspended zipper‐braced frames with different number of storeys and founded on either soft or rock soil. The structural response of these frames is analysed to highlight qualities and deficiencies and to assess the critics reported by other researchers with regard to the design procedure by Yang et al. Then, improvements are proposed to this procedure to enhance the energy dissipation of the chevron braces and the response of the structural system as well. The effectiveness of the design proposals is evaluated by incremental dynamic analysis on structures with different geometric properties, gravity loads and soil of foundation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
An analytical and experimental study has been conducted to evaluate the seismic performance of a three‐story suspended zipper steel frame. The frame was concentrically braced and had zipper struts to transfer the unbalanced forces induced on the beams due to the buckling of the lower‐story braces. The experimental study was conducted with the hybrid test technique, in which only the bottom‐story braces of the three‐story frame were physically tested, while the behavior of the rest of the frame was modeled using a general structural analysis software. The paper discusses issues pertinent to the calibration of the computer model for the analytical substructure as well as for the entire frame, including the selection of an appropriate damping matrix, and the modeling of the buckling behavior of the braces and bracing connections. The analytical model of the entire frame was validated with the hybrid tests and was able to accurately capture the material and geometric nonlinearities that developed when the braces yielded and buckled. This study has demonstrated the usefulness of hybrid testing in improving analytical models and modeling assumptions and providing information that cannot be obtained from an analytical study alone. The results have shown that the suspended zipper frame can distribute the brace nonlinearity over the first two stories as intended in the design and will not have catastrophic failure under the design‐level earthquakes considered in this study, despite the significant inelastic deformations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Special concentrically braced frames (SCBFs) are commonly used as the lateral‐load resisting system in buildings. SCBFs primarily sustain large deformation demands through inelastic action in the brace, including compression buckling and tension yielding; secondary yielding may occur in the gusset plate and framing elements. The preferred failure mode is brace fracture. Yielding, buckling, and fracture behavior results in highly nonlinear behavior and accurate analytical modeling of these frames is required. Prior research has shown that continuum models are capable of this level of simulation. However, those models are not suitable for structural engineering practice. To enable the use of accurate yet practical nonlinear models, a research study was undertaken to investigate modeling parameters for line‐element models, which is a more practical modeling approach. This portion of the study focused on methods to predict brace fracture. A fracture modeling approach simulated the nonlinear, cyclic response of SCBFs by correlating onset of fracture to the maximum strain range in the brace. The model accounts for important brace design parameters including slenderness, compactness, and yield strength. Fracture data from over 40 tests was used to calibrate the model and included single‐brace component, single story frame, and full‐scale multistory frame specimens. The proposed fracture model is more accurate and simpler than other, previously proposed models. As a result, the proposed model is an ideal candidate for practical performance simulation of SCBFs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The effectiveness of hysteretic passive devices to protect and mitigate the response of a structure under seismic loading is well established by both analytical and experimental research. Nevertheless, a systematic and well‐established methodology for the topological distribution and size of these devices in order to achieve a desired structural response performance does not exist. In this paper, a computational framework is proposed for the optimal distribution and design of yielding metallic buckling restrained braces (BRB) and/or friction dampers within steel moment‐resisting frames (MRF) for a given seismic environment. A Genetic Algorithm (GA) is used to solve the resulting discrete optimization problem. Specific examples involving two three‐story, four‐bay steel MRFs and a six‐story, three‐bay steel MRF retrofitted with yielding and/or friction braces are considered. The seismic environment consists of four synthetic ground motions representative of the west coast of the United States with 5% probability of exceedance in 50 years. Non‐linear time‐history analyses are employed to evaluate the potential designs. As a result of the evolutionary process, the optimal placement, strength and size of the dampers are obtained throughout the height of the steel MRF. Furthermore, the developed computational approach for seismic design based upon GAs provides an attractive procedure for design of MRFs with hysteretic passive dampers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
为检验抗侧刚度比和支撑布置方式等因素对具有不同总层数的屈曲约束支撑钢框架的抗震性能影响,借助SAP2000软件,探讨6层、12层、18层屈曲约束支撑钢框架结构在抗侧刚度比分别为1、2、3、4、5共五种工况及倒V型和单斜向两种支撑布置方式下的抗震性能。结果表明,屈曲约束支撑钢框架结构基底剪力-顶点位移曲线呈典型的双线性特征;随抗侧刚度比的增大,结构的层间位移角总体上呈降低趋势,基底剪力及支撑轴力增大,顶点水平位移变小,框架所分担的剪力降低;倒V型布置支撑较单斜向布置具有略大的基底剪力、谱加速度,较小的顶点位移、层位移、层间剪力和框架剪力分担率。分析表明,总体上来看,倒V型布置较单斜向布置时支撑框架结构具有略优的抗震性能;抗侧刚度比较支撑布置方式对支撑框架结构抗震性能的影响更为显著。  相似文献   

15.
The insertion of steel braces equipped with viscoelastic dampers (VEDs) (‘dissipative braces’) is a very effective technique to improve the seismic or wind behaviour of framed buildings. The main purpose of this work is to compare the earthquake and wind dynamic response of steel‐framed buildings with VEDs and achieve optimal properties of dampers and supporting braces. To this end, a numerical investigation is carried out with reference to the steel K‐braced framed structure of a 15‐storey office building, which is designed according to the provisions of Eurocodes 1 and 3, and to four structures derived from the first one by the insertion of additional diagonal braces and/or VEDs. With regard to the VEDs, the following cases are examined: absence of dampers; insertion of dampers supported by the existing K‐braces in each of the structures with or without additional diagonal braces; insertion of dampers supported by additional diagonal braces. Dynamic analyses are carried out in the time domain using a step‐by‐step initial stress‐like iterative procedure. For this purpose, the frame members and the VEDs are idealized, respectively, by a bilinear model, which allows the simulation of the nonlinear behaviour under seismic loads, and a six‐element generalized model, which can be considered as an in‐parallel‐combination of two Maxwell models and one Kelvin model. Artificially generated accelerograms, whose response spectra match those adopted by Eurocode 8 for a medium subsoil class and for different levels of peak ground acceleration, are considered to simulate seismic loads. Along‐wind loads are considered assuming, at each storey, time histories of the wind velocity for a return period Tr=5 years, according to an equivalent spectrum technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
当前方法采用伸臂桁架加固建筑结构时,未考虑建筑结构的屈曲约束支撑力的影响,伸臂桁架与建筑结构的连接不牢固,导致其对建筑结构的抗震加固性能较差。故此,深入分析建筑结构的屈曲约束支撑对其抗震加固性能的影响,设计建筑结构抗震加固方案,利用高强螺栓节点经由连接钢板实现屈曲约束支撑与建筑结构的铰接固定。分别从支撑变形同建筑结构层间位移的关系、建筑结构支撑承载力、多遇地震影响下屈曲约束支撑框架的位移验算,以及罕遇地震影响下屈曲约束支撑的弹塑性位移验算方面,分析屈曲约束支撑对建筑结构抗震加固性能影响。经实验分析得出,建筑结构加入屈曲约束支撑后第一扭转周期同第一平动周期的比值降低0.14,X、Y两个方向的砌体墙同建筑结构的刚度比值降低6.9、8.0,最大顶点位移值降低15.4 mm、29.3 mm,抗震加固性能大大提高。  相似文献   

17.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Buckling restrained braces (BRBs) are very effective in dissipating energy through stable tension–compression hysteretic cycles and have been successfully experimented in the seismic protection of buildings. Their behavior has been studied extensively in the last decades and today the level of performance guaranteed by these devices and the technological constrains that have to be fulfilled to optimize their behavior are well known. Furthermore, several companies in the world have developed their own BRBs and are now producing them. In spite of this, many seismic codes (for instance, the EuroCode 8) do not stipulate provisions for the design and construction of earthquake‐resistant structures equipped with BRBs. This discourages the structural engineering community from using these devices and seriously limits their use in structural applications. In this paper a procedure for the seismic design of steel frames equipped with BRBs is proposed. Furthermore, the paper presents a numerical investigation aimed at validating this design procedure and proposing the value of the behavior factor q that should be used for this structural type. To this end, a set of frames with BRBs is first designed by means of several values of q. Then, the obtained frames are subjected to a set of accelerograms compatible with the elastic response spectrum considered in design. The seismic response of the frames is determined by nonlinear dynamic analysis and represented in terms of the ductility demand of BRBs and the internal force demand of nondissipative members (beams and columns). Finally, the largest value of q that leads to acceptable seismic performance of the analyzed frames is assumed as adequate. The value of q is given in the paper as a continuous function of the assumed ductility capacity of the BRBs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
K形高强钢组合偏心支撑(K-HSS-EBF)是指耗能连梁和支撑采用Q345钢,而框架梁、框架柱采用高强度钢(如Q460)。为研究其在罕遇地震作用下的抗震性能,在试验研究的基础上,采用直接基于位移的抗震设计方法设计了5层、8层和12层算例,分别进行静力推覆分析和动力弹塑性分析,研究高强钢组合偏心支撑钢框架在罕遇地震作用下层间侧移分布和破坏模式。研究结果表明:直接基于位移的抗震设计方法设计的算例在罕遇地震作用下,结构的层间侧移满足我国现行抗震规范的要求,结构呈理想的渐进式梁铰屈服机构,并证明该设计方法的合理性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号