首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incremental dynamic analysis (IDA) leads to curves expressed in terms of structural response versus intensity, commonly known as the IDA curves. It is known that implementation of IDA usually involves significant computational effort and most often significant scaling of the original records to various intensity levels. Employing as the performance variable the critical demand to capacity ratio (DCR) throughout the structure, which is equal to unity at the onset of the limit state, facilitates the identification of the intensity values at the onset of a desired limit state and hence the implementation of the IDA procedure. Employing the structural response to un‐scaled records and the corresponding regression‐based response predictions (a.k.a., the “Cloud Analysis”) helps in identifying the range of intensity values corresponding to demand to capacity ratio values in the vicinity of unity. The Cloud to IDA procedure for structural fragility assessment is proposed on the premise of exploiting the Cloud Analysis results to obtain the IDA curves both with minimum number of analyses and minimum amount of scaling. The transverse frame of a shear‐critical 7‐story older RC building in Van Nuys, CA, which is modeled in Opensees with fiber‐section considering the flexural‐shear‐axial interactions and the bar slip, is employed as a case study. It is demonstrated, by comparing the results to IDA and other state of the art non‐linear dynamic procedures based on no scaling or spectral‐shape‐compatible scaling, that the Cloud to IDA procedure leads to reliable results in terms of structural fragility and risk for the prescribed limit state.  相似文献   

2.
The back‐to‐back application of mainshock records as aftershock is often considered in conducting aftershock incremental dynamic analysis. In such an approach, the characteristics of mainshock records are considered to be similar to those of major aftershock records within the same mainshock–aftershock sequences. The underlying assumption is that the characteristics of selected mainshocks, other than those used for record selection, are not significant in the assessment of structural responses. A case study is set up to investigate the effects of aftershock record selection on the collapse vulnerability assessment. The numerical results for a specific wood‐frame structure indicate that the aftershock fragility can be affected by the aftershock record characteristics, particularly response spectral shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A widespread approach for the prediction of the structural response as function of the ground motion intensity is based on the Cloud Analysis: once a set of points representing the engineering demand parameter (EDP) values is obtained as function of the selected seismic intensity measure (IM) for a collection of unscaled earthquake records, a regression analysis is performed by assuming a specific functional form to correlate these variables. Within this framework, many studies have been devoted so far to evaluate the effectiveness of several IMs in estimating the EDPs through intrinsically linear functional forms, but it is still unknown to what extent the use of the linear regression analysis affects the quality of the final results. This paper is intended to provide an answer to such question by means of the calibration of suitable nonlinear combinations of scalar IMs, whose statistical performances are compared with those obtained by using the functional form usually adopted for linear regression-based calibrations. Specifically, the Evolutionary Polynomial Regression technique is adopted to calibrate nonlinear regression models for the prediction of maximum inter-story drift ratio and maximum floor acceleration. The comparative analysis is performed for fixed-base and base-isolated reinforced concrete buildings subjected to ordinary or pulse-like ground motion taking into account accuracy, complexity, efficiency and sufficiency. Final results demonstrate that the linear regression analysis is suitable for fixed-base reinforced concrete buildings, but nonlinear regression models provide better estimates. On the other hand, the linear regression analysis can introduce a significant bias in the seismic response prediction of base-isolated buildings, and nonlinear regression models are deemed more appropriate.  相似文献   

4.
The modal pushover‐based scaling (MPS) procedure, currently restricted to symmetric‐plan buildings, is extended herein to unsymmetric‐plan buildings. The accuracy of the extended MPS procedure was evaluated for a large set of three‐degree‐of‐freedom unsymmetric‐plan structures with variable stiffness and strength. The structures were subjected to nonlinear response history analysis considering sets of seven records scaled according to the MPS procedure. Structural responses were compared against the benchmark values, defined as the median values of the engineering demand parameters due to 30 unscaled records. This evaluation of the MPS procedure has led to the following conclusions: (i) the MPS procedure provided accurate estimates of median engineering demand parameter values and reduced record‐to‐record variability of the responses; and (2) the MPS procedure is found to be much superior compared to the ASCE/SEI 7‐10 scaling procedure for three‐dimensional analysis of unsymmetric‐plan buildings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The collapse capacity of earthquake‐excited inelastic nondeteriorating SDOF systems, which are vulnerable to the destabilizing effect of gravity loads (P‐delta effect), is evaluated. In this paper, the collapse capacity of the system subjected to a ground motion is defined as spectral acceleration at its initial structural period, at which the structure becomes unstable. Characteristic structural parameters, which affect the collapse capacity, are identified. Ground motion records of the ATC 63 far‐field set characterize severe earthquake excitation. In extensive incremental dynamic analyses studies, the impact of these parameters and of aleatory uncertainties on the collapse capacity is assessed and quantified. Median and percentile collapse capacities are plotted against the initial structural period leading to collapse capacity spectra. Nonlinear regression analyses are applied to derive analytical expressions of the design collapse capacity spectra and collapse fragility curves. The ultimate objective is to provide collapse capacity spectra for easy application and yet sufficient accurate assessment of the dynamic stability of flexible multistory buildings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents, within the performance‐based earthquake engineering framework, a comprehensive probabilistic seismic loss estimation method that accounts for main sources of uncertainty related to hazard, vulnerability, and loss. The loss assessment rigorously integrates multiple engineering demand parameters (maximum and residual inter‐story drift ratio and peak floor acceleration) with consideration of mainshock–aftershock sequences. A 4‐story non‐ductile reinforced concrete building located in Victoria, British Colombia, Canada, is considered as a case study. For 100 mainshock and mainshock–aftershock earthquake records, incremental dynamic analysis is performed, and the three engineering demand parameters are fitted with a probability distribution and corresponding dependence computed. Finally, with consideration of different demolition limit states, loss assessment is performed. From the results, it can be shown that when seismic vulnerability models are integrated with seismic hazard, the aftershock effects are relatively minor in terms of overall seismic loss (1–4% increase). Moreover, demolition limit state parameters, uncertainties of collapse fragility, and non‐collapse seismic demand prediction models have showed significant contribution to the loss assessment. The seismic loss curves for the reference case and for cases with the varied parameters can differ by as large as about 150%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this work is to propose seismic reliability‐based relationships between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties. The isolated structures are described by employing an equivalent 2dof model characterized by a perfectly elastoplastic rule to account for the inelastic response of the superstructure, whereas, the FPS behavior is described by a velocity‐dependent model. An extensive parametric study is carried out encompassing a wide range of elastic and inelastic building properties, different seismic intensity levels and considering the friction coefficient as a random variable. Defined a set of natural seismic records and scaled to the seismic intensity corresponding to life safety limit state for L'Aquila site (Italy) according to NTC08, the inelastic characteristics of the superstructures are designed as the ratio between the average elastic responses and increasing strength reduction factors. Incremental dynamic analyses (IDAs) are developed to evaluate the seismic fragility curves of both the inelastic superstructure and the isolation level assuming different values of the corresponding limit states. Integrating the fragility curves with the seismic hazard curves related to L'Aquila site (Italy), the reliability curves of the equivalent inelastic base‐isolated structural systems, with a design life of 50 years, are derived proposing seismic reliability‐based regression expressions between the displacement ductility demand and the strength reduction factors for the superstructure as well as seismic reliability‐based design (SRBD) abacuses useful to define the FPS properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Although for many years it was thought that amplitude scaling of acceleration time series to reach a target intensity did not introduce any bias in the results of nonlinear response history analyses, recent studies have showed that scaling can lead to an overestimation of deformation demands with increasing scale factors. Some studies have suggested that the bias can be explained by differences in spectral shape between the response spectra of unscaled and scaled records. On the basis of these studies, some record selection procedures assume that if records are selected using spectral-shape-matching procedures, amplitude scaling does not induce any bias on the structural response. This study evaluates if bias is introduced on lateral displacement demands and seismic collapse risk estimates even when spectral shape is carefully taken into consideration when selecting ground motions. Several single-degree-of-freedom and multiple-degree-of-freedom systems are analyzed when subjected to unscaled and scaled ground motions selected to approximately match the mean and the variance of the conditional spectrum at the target level of intensity. Results show that an explicit consideration of spectral shape is not enough to avoid a systematic overestimation of lateral displacement demands and collapse probabilities as the scale factor increases. Moreover, the bias is observed in practically all cases for systems with strength degradation and it increases with decreasing period and decreasing lateral strength relative to the strength required to remain elastic. Key reasons behind the bias are presented by evaluating input energy, causal parameters, and damaging pulse distributions in unscaled and scaled ground motion sets.  相似文献   

9.
A procedure for incorporating record‐to‐record variability into the simplified seismic assessment of RC wall buildings is presented. The procedure relies on the use of the conditional spectrum to randomly sample spectral ordinates at relevant periods of vibration. For inelastic response, displacement reduction factors are then used to relate inelastic displacement demand to the spectral displacement at the effective period for single‐degree‐of‐freedom systems. Simple equations are used to convert back and forth between multi‐degree‐of‐freedom RC wall buildings and equivalent single‐degree‐of‐systems so that relevant engineering demand parameters can be obtained. Consideration is also given to higher‐mode effects by adapting existing modal combination rules. The proposed method is applied to several case study buildings, showing promising results in the examination of inter‐storey drift ratio and shear forces. The proposed method captures the variation in the distribution of structural response parameters that occurs with variations in structural configuration, intensity, engineering demand parameter of interest and site characteristics. Discussion is provided on possible ways to improve the accuracy of the procedure and suggestions for additional future work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Recent studies have addressed the computation of fragility curves for mainshock (MS)‐damaged buildings. However, aftershock (AS) fragilities are generally conditioned on a range of potential post‐MS damage states that are simulated via static or dynamic analyses performed on an intact building. Moreover, there are very few cases where the behavior of non‐ductile reinforced concrete buildings is analyzed. This paper presents an evaluation of AS collapse fragility conditioned on various return periods of MSs, allowing for the rapid assessment of post‐earthquake safety variations based solely on the intensity of the damaging earthquake event. A refined multi‐degree‐of‐freedom model of a seven‐storey non‐ductile building, which includes brittle failure simulations and the evaluation of a system level collapse, is adopted. Aftershock fragilities are obtained by performing an incremental dynamic analysis for a number of MS–AS ground motion sequences and a variety of MS intensities. The AS fragilities show that the probability of collapse significantly increases for higher return periods for the MS. However, this result is mainly ascribable to collapses occurred during MSs. When collapse cases that occur during a MS are not considered in the assessment of AS collapse probability, a smaller shift in the fragility curves is observed as the MS intensity increases. This result is justified considering the type of model and collapse modes introduced, which strongly depend on the brittle behavior of columns failing in shear or due to axial loads. The analysis of damage that is due to MSs when varying the return period confirms this observation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a hysteretic model capturing the local shear response of shear‐deficient R/C elements is described in detail, with emphasis on post‐peak behaviour; it differs from existing models in that it considers the localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. Additionally, an effort is made to improve the state of the art in post‐peak shear response modelling, by compiling the largest database of experimental results for shear and flexure‐shear critical R/C columns cycled well beyond the onset of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters defining the local backbone post‐peak shear response of such elements. The implementation of the derived local hysteretic shear model in a computationally efficient beam‐column finite element model with distributed shear flexibility, which accounts for all deformation types, will be presented in a companion paper.  相似文献   

12.
The seismic performance of conventional wood‐frame structures in south‐western British Columbia is analytically investigated through incremental dynamic analysis by utilizing available UBC‐SAWS models, which were calibrated based on experimental test results. To define an adequate target response spectrum that is consistent with information from national seismic hazard maps, record selection/scaling based on the conditional mean spectrum (CMS) is implemented. Furthermore, to reflect complex seismic hazard contributions from different earthquake sources (i.e. crustal events, interface events, and inslab events), we construct CMS for three earthquake types, and use them to select and scale an adequate set of ground motion records for the seismic performance evaluation. We focus on the impacts of adopting different record selection criteria and of using different shear‐wall types (Houses 1–4; in terms of seismic resistance, House 1>House 2>House 3>House 4) on the nonlinear structural response. The results indicate that the record selection procedures have significant influence on the probabilistic relationship between spectral acceleration at the fundamental vibration period and maximum inter‐story drift ratio, highlighting the importance of taking into account response spectral shapes in selecting and scaling ground motion records. Subjected to ground motions corresponding to the return period of 2500 years, House 1 is expected to experience very limited extent of damage; Houses 2 and 3 may be disturbed by minor damage; whereas House 4 may suffer from major damage occasionally. Finally, we develop statistical models of the maximum inter‐story drift ratio conditioned on a seismic intensity level for wood‐frame houses, which is useful for seismic vulnerability assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Recent efforts of regional risk assessment of structures often pose a challenge in dealing with the potentially variable uncertain input parameters. The source of uncertainties can be either epistemic or aleatoric. This article identifies uncertain variables exhibiting strongest influences on the seismic demand of bridge components through various regression techniques such as linear, stepwise, Ridge, Lasso, and elastic net regressions. The statistical results indicate that Lasso regression is the most effective one in predicting the demand model as it has the lowest mean square error and absolute error. As the sensitivity study identifies more than 1 significant variable, a multiparameter fragility model using Lasso regression is suggested in this paper. The proposed fragility methodology is able to identify the relative impact of each uncertain input variable and level of treatment needed for these variables in the estimation of seismic demand models and fragility curves. Thus, the proposed approach helps bridge owners to spend their resources judiciously (e.g., data collection, field investigations, and censoring) in the generation of a more reliable database for regional risk assessment. This proposed approach can be applicable to other structures.  相似文献   

14.
15.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a computationally efficient member‐type finite element model for the hysteretic response of shear critical R/C frame elements up to the onset of axial failure is presented; it accounts for shear‐flexure interaction and considers, for the first time, the localisation of shear strains, after the onset of shear failure, in a critical length defined by the diagonal failure plane. Its predictive capabilities are verified against experimental results of column and frame specimens and are shown to be accurate not only in terms of total response, but also with regard to individual deformation components. The accuracy, versatility, and simplicity of this finite element model make it a valuable tool in seismic analysis of complex R/C buildings with shear deficient structural elements.  相似文献   

16.
This paper develops a procedure to select unscaled ground motions for estimating seismic demand hazard curves (SDHCs) in performance‐based earthquake engineering. Currently, SDHCs are estimated from a probabilistic seismic demand analysis, where several ensembles of ground motions are selected and scaled to a user‐specified scalar conditioning intensity measure (IM). In contrast, the procedure developed herein provides a way to select a single ensemble of unscaled ground motions for estimating the SDHC. In the context of unscaled motions, the proposed procedure requires three inputs: (i) database of unscaled ground motions, (ii) I M , the vector of IMs for selecting ground motions, and (iii) sample size, n; in the context of scaled motions, two additional inputs are needed: (i) a maximum acceptable scale factor, SFmax, and (ii) a target fraction of scaled ground motions, γ. Using a recently developed approach for evaluating ground motion selection and modification procedures, the proposed procedure is evaluated for a variety of inputs and is demonstrated to provide accurate estimates of the SDHC when the vector of IMs chosen to select ground motions is sufficient for the response quantity of interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

18.
Current seismic design codes and damage estimation tools neglect the influence of successive events on structures. However, recent earthquakes have demonstrated that structures damaged during an initial event (mainshock) are more vulnerable to severe damage and collapse during a subsequent event (aftershock). This increased vulnerability to damage translates to increased likelihood of loss of use, property, and life. Thus, a reliable risk assessment tool is required that characterizes the risk of the undamaged structure subjected to an initial event and the risk of the damaged structure under subsequent events. In this paper, a framework for development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a building damaged during a mainshock will exhibit a given damage state following one or more aftershocks. Thus, the framework provides a method for characterizing the risk associated with damage accumulation in the structure. The framework includes the following: (i) creation of a numerical model of the structure; (ii) characterization of building damage states; (iii) generation of a suite of mainshock–aftershocks; (iv) mainshock–aftershock analyses; and (v) development of aftershock fragility curves using probabilistic aftershock demand models, defined as a linear regression of aftershock demand–intensity pairs in a logarithmic space, and damage‐state prediction models. The framework is not limited to a specific structure type but requires numerical models defining structural response and linking structural response with damage. In the current study, non‐ductile RC frames (low‐rise, mid‐rise, and high‐rise) are selected as case studies for the application of the framework. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Post‐earthquake reconnaissance has reported the vulnerability of older reinforced concrete (RC) columns lacking details for ductile response. Research was undertaken to investigate the full‐range structural hysteretic behavior of older RC columns. A two‐dimensional specimen frame, composed of nonductile and ductile columns to allow for load redistribution, was subjected to a unidirectional base motion on a shaking table until global collapse was observed. The test demonstrates two types of column failure, including flexure‐shear and pure flexural failure. Test data are compared with various simplified assessment models commonly used by practicing engineers and researchers to identify older buildings that are at high risk of structural collapse during severe earthquake events. Comparison suggests that ASCE/SEI 41‐06 produces very conservative estimates on load–deformation relations of flexure‐shear columns, while the recently proposed ASCE/SEI 41‐06 update imposes significant modifications on the predictive curve, so that improved accuracy has been achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Bridges are crucial to the transportation network in a region struck by an earthquake. Collapse of a bridge determines if a road is passable. Ability of a bridge to carry traffic load after an earthquake determines the weight and speed of vehicles that can cross it. Extent of system and component structural damage in bridges determines the cost and time required for repair. Today, post‐earthquake bridge evaluation is qualitative rather than quantitative. The research presented in this paper aims to provide a quantitative engineering basis for quick and reliable evaluation of the ability of a typical highway overpass bridge to function after an earthquake. The Pacific Earthquake Engineering Research (PEER) Center's probabilistic performance‐based evaluation approach provides the framework for post‐earthquake bridge evaluation. An analytical study was performed that linked engineering demand parameters to earthquake intensity measures. The PEER structural performance database and reliability analysis tools were then used to link demand parameters to damage measures. Finally, decision variables were developed to describe three limit states, repair cost, traffic function, and collapse, in terms of induced damage. This paper presents the analytical models used to evaluate post‐earthquake bridge function, decision variables and their correlation to the considered limit states, and fragility curves that represent the probability of exceeding a bridge function limit state given an earthquake intensity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号