首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘加强 《地质与勘探》2012,48(3):508-517
[摘 要] 滇东南地区上二叠统吴家坪阶下部铝土矿不整合于峨眉山玄武岩或灰岩之上,查明其物质来源对铝土矿勘探具有重要意义。对铝土矿及峨眉山大火成岩省玄武岩、花岗岩及下伏灰岩的地球化学指标进行研究,结果表明:滇东南铝土矿常量元素主要由SiO2、Fe2O3、Al2O3、TiO2 和FeO 组成;铝土矿中富集Zr、Hf、Nb、Ta 元素,表明Zr、Hf、Nb、Ta 等高场强元素在滇东南地区铝土矿矿化过程中较为稳定,且Zr、Hf、Nb、Ta 表现出良好的相关性;铝土矿球粒陨石标准化曲线与峨眉山玄武岩配分曲线趋势一致,均富集轻稀土元素,而与下伏灰岩差异较大,且Zr-Hf、Nb-Ta 图解与峨眉山玄武岩呈线性关系,而与矮郎河过铝质花岗岩的相关性不强。据此推断滇东南地区上二叠统吴家坪阶下部铝土矿主要物质来源为峨眉山玄武岩。  相似文献   

2.
桂西地区铝土矿为典型喀斯特型,包括二叠系沉积型和第四系堆积型两亚类。堆积型铝土矿是沉积型铝土矿经抬升、破碎、风化,最后堆积于喀斯特洼地中形成。以平果教美铝土矿为研究对象,探索堆积型铝土矿形成过程中矿物的变化与元素迁移。沉积型矿石的矿物组成包括硬水铝石、鲕绿泥石、锐钛矿及少量针铁矿、金红石和高岭石;堆积型矿石的矿物组成主要为硬水铝石、锐钛矿、高岭石及少量三水铝石和鲕绿泥石。转化过程中堆积型矿石中的硬水铝石含量明显增加,鲕绿泥石含量明显减少。沉积型铝土矿的主要化学组成为Al2O3、SiO2、FeO和TiO2;堆积型为Al2O3、SiO2、TiO2和Fe2O3。两类矿石中元素Zr 、Ba、Nb、V含量均较高,稀土总量变化大,富集轻稀土。质量平衡计算表明堆积型铝土矿形成过程中Al、Ba、Sr、Y等元素增加,而Si、Fe、Ti、Nb、V、Ce等元素减少,其余元素变化不明显。  相似文献   

3.
通过堆积矿矿-土组合特征的研究,揭示了平果矿区在强烈剥蚀环境中堆积矿保存的地质条件,将矿层结构类型划分为斜坡型、洼地型和塌陷型,明确了它们与矿区岩溶地貌分带对应、继承演化的关系.通过矿层地球化学分析,在矿土物源关系、风化程度、成矿相关性等方面揭示了堆积矿在演化过程中风化强、剥蚀弱的特点,这种特点有利于铝土矿的成矿.矿层...  相似文献   

4.
Abstract. The Dholkata bauxite deposit of Keonjhar district, Orissa, has developed on the metavolcanics of tholeiitic basalt composition. The weathered profile reveals five distinct altered zones, such as topsoil, laterite, bauxite, lithomarge and altered metavolcanics. The mineralogy of different zones studied in a representative pit shows the association of major mineral constituents like gibbsite, goethite, hematite, kaolinite, limonite and quartz. Gibbsite is the most dominant one followed by goethite and hematite in the bauxite zone. The geochemical study of all weathering zones indicates the geochemical affinity of the elements Ni, Th and U for laterites and Cr, Zr and Hf for bauxites to occur in high quantities. Trend surface maps predict the bauxite zones in the different levels of the deposit. If the zones having A12O3 35–40 % are blended with high grade ores, the deposit may prove to be a potential one.  相似文献   

5.
Four outcrops of Lower Cretaceous (Barremian) karst bauxites located in Teruel (NE Spain) were analysed. The deposits show a heterogeneous-chaotic lithostructure consisting of pisolitic bauxite blocks embedded in lateritic red clays filling karst cavities. The research has focused on the geochemical study of major, minor, and trace elements (including some critical to industry) of both the bauxites and clays. The objective was to investigate the bauxite precursor material and to characterize the system’s geochemical evolution. Geochemical analyses were carried out by inductively-coupled plasma optical emission and mass spectroscopy. An absolute weathering index has been calculated to estimate element mobility, assuming Ti as an immobile element and the Upper Continental Crust (UCC) as parent material. Further, selected samples were observed by field emission scanning electron microscopy. The data indicate that both the bauxites and red clays originated by intense chemical weathering from more mafic argillaceous sediments than the UCC. Ongoing weathering caused the bauxitization of the upper parts of the original profile, preventing the lower parts from being bauxitized, thus producing the ferrallitized clays underlying the pisolitic bauxites. Subsequent karst reactivation gave rise to the current lithostructure. Ferrallitization is related to Fe, Sc, and V enrichment. On the other hand, although bauxites are relatively enriched in some elements compared to clays, the more intense chemical weathering associated with bauxitization led to chemical homogenization and widespread element depletion. During the bauxitization, Al, Ti, Zr, Cr, and probably Hf and the critical element Nb behaved as more immobile elements in the system. Bauxitization also enhanced homogenization and depletion of the REE, which is more pronounced for the LREE. HREE trends seem to be partly related to the concentration of Ti oxides in the bauxites, whereas P-bearing phases, more frequent in the clays, control the LREE. Subsequent to bauxitization, partial kaolinization of the bauxite took place related to the circulation of acid solutions that also caused the karst reactivation. These late processes caused some Al depletion in the bauxites and enhanced Fe loss together with V and, to a lesser extent, Ge.  相似文献   

6.
The authors have found in their studies many new genetic types of microtextures of bauxite. A sedimentological genetic classification of bauxites based on these features and a division of the microfacies types of bauxites formed in major microenvironments are proposed. Four kinds of sedimentary sequence of bauxitic sediments have also been recognized. On these bases, a generalized sedimentary model of Carboniferous bauxites in North China is presented, in which storm-turbidite currents play an important role in the formation and enrichment of bauxite deposits.  相似文献   

7.
桂西二叠纪喀斯特型铝土矿是第四纪萨伦托型铝土矿的矿源层,但是其具体成矿地质过程并不清楚.在矿带东部平果矿田1∶5万区域地质调查基础上,针对性地对二叠纪铝土矿床进行了合山组含铝岩系基本层序、铝土矿成矿物质来源、古喀斯特地貌对铝土矿的控制作用及含铝矿物生成顺序的研究,并阐述了该类型铝土矿从源岩风化到搬运沉积的具体成矿过程.综合前人研究成果,提出桂西二叠纪喀斯特型铝土矿的四阶段成矿模式,分别为孤立台地隆升接受火山喷发沉积物阶段、原地深度风化阶段、积水潜育化阶段和埋藏成矿阶段.   相似文献   

8.
This work deals with a concise but comprehensive study of trace-element distribution in the bauxite deposits of Mediterranean belt. Although the alloctonous and mainly detritic characters of several “karst bauxite” deposits are well established, their parent rock has remained largely enigmatic. Evidence is available that some chemical elements, notably Zr, Cr and Ga are largely immobile during the weathering and diagenesis and study of such trace-elements in “karst bauxites” permits to make an approach to the lithological nature of their parent rocks. It is shown, by reference to analyses of bauxites from Mediterranean areas, that all the deposits studied are aligned from a Cr rich pole related to ultramafics to another pole rich in Ga and Zr contents and in genetical relation with acidic parent rocks. The results obtained by this way have been controlled by application of “trace-element accumulation coefficient” which permits to distinguish four principal zones of bauxite derived from the parent rock of different lithological characters (Fig. 3).  相似文献   

9.
The Early Cambrian, Middle and Late Devonian, Middle and Late Carboniferous, Permian, Late Triassic-Early Jurassic, Late Cretaceous, Paleocene-Eocene, and Miocene epochs of bauxite formation have been the most productive. They lasted for no less than 10 Ma. The scope of bauxite deposition of various epochs is shown in the diagram, and the present-day localization of Cenozoic, Mesozoic, and Paleozoic bauxites is depicted in separate maps. The Cenozoic bauxite deposits are located in tropical and subtropical zones of the Southern and Northern hemispheres. The Mesozoic deposits occur in the Northern Hemisphere as far north as 50°N, and the Paleozoic deposits, as far north as 70°N. Palinspastic reconstructions show that during all the aforementioned epochs, bauxites were deposited at paleotropical latitudes. The current localization of the Paleozoic and Mesozoic bauxites at high latitudes up to the Polar Circle is caused by continental drift to the north in the Phanerozoic.  相似文献   

10.
铝土矿地质与成因研究进展   总被引:9,自引:0,他引:9  
王庆飞 《地质与勘探》2012,48(3):430-448
[摘 要]我国铝土矿矿产时空分布广,类型多样,铝土矿地质与成因研究对促进铝土矿地质学发展有重要意义。本文从铝土矿矿床分类、铝土矿的矿体形态与内部结构、矿体层序、物质组成、物质来源、成矿环境和成因机制等方面,综述了国内外铝土矿地质学的研究进展,阐释了我国铝土矿的部分特征,提出了近年我国铝土矿研究的部分新方法与观点;应用铝土矿中碎屑锆石U-Pb 和Lu-Hf 同位素特征, 判识了多个喀斯特型铝土矿集中区的物质来源,提出多数喀斯特型铝土矿多具有异源特征,与区域重大地质事件具有成因联系,是洋陆俯冲、大陆漂移以及集中风化等多因耦合的结果。提出了我国喀斯特型铝土矿迁移机制,认为华北板内铝土矿(山西、河南) 成因机制主体为“离子结晶与碎屑沉积冶综合成因;而华南铝土矿(贵州、广西)成因机制主体为“离子结晶冶成因。  相似文献   

11.
河南巩县铝土矿位于华北地台的南部,其基底岩系为前寒武纪的变质岩系,其上有震旦系、寒武系和下、中奥陶统的地层。中奥陶统灰岩层是铝土矿的直接底板,灰岩的顶面凹凸不平,多被铁质浸染呈黄褐色,局部地方有残积的贫铁矿层,中石炭统铝土矿层呈平行不整合覆盖其上。  相似文献   

12.
山西孝义铝土矿扫描电镜研究   总被引:2,自引:0,他引:2  
本文用扫描电子显微镜和能量色散谱仪研究了山西孝义铝土矿的微观形态和结构,并与国内其他几个铝土矿略作比较。认为孝义铝土矿可分为四个地质层位,多层微观形态和结构具有明显特征。C层是一水硬铝石最富集的一层,其晶体发育程度不及河南新安铝土矿,但比广西平果铝土矿中的一水硬铝石晶体略为完整。  相似文献   

13.
The Mandan and Deh-now bauxite deposits are located 40 km northeast of the Dehdasht city in the Zagros simply fold belt. These deposits occur in eroded major NW–SE trending anticlines and occupy karst cavities near or at the boundary between the Sarvak and Ilam Formations. Local uplifts at the end of the Cenomanian and the mid-Turonian caused erosion and karstification of the Sarvak Formation. These unconformities in the Upper Cretaceous favoured the formation and enrichment of bauxite deposits in the Zagros fold belt. The bauxite sequence in the Mandan deposit consists of white, gray, black, pisolitic, red, and yellow bauxites. This sequence was repeated in the Deh-Now area, but without gray and black bauxites. The present mineralogical studies of the Sarvak Formation and the Mandan and Deh-now bauxite deposits indicate oxidizing to reducing conditions during the Upper Cretaceous in the Zagros fold belt, which had a significant effect on the compositions of the bauxites. At least two phases of bauxitization can be distinguished in the study area: (i) an oxidizing phase represented by boehmite, diaspore, hematite and kaolinite; and (ii) a reducing phase represented by pyrite and chlorite. Geochemical data show that trace elements, like Zr, Hf, Nb, Ta, Th, and U, were enriched during bauxitization. The bauxite deposits and carbonate rocks show similar REE patterns, namely they are enriched in REEs although the LREEs are more enriched than the HREEs. Mass change calculations demonstrate that Mg, Mn, Ca, K, and P2O5 were leached out of the weathered system whereas Al, Fe, and Si become concentrated in the residual system. This study indicates that the Mandan and Deh-now deposits are karst-type bauxites formed by karstification and weathering of the Sarvak Formation.  相似文献   

14.
铝土矿是化学风化作用的细粒终极产物,与强烈的化学风化作用密切相关。根据母岩的类别及作用过程,风化作用进一步分为铝硅酸盐岩强化学风化形成的红土化作用和碳酸盐岩强化学风化形成的钙红土化作用。在强烈的化学风化过程中,地表的原始沉积物(母岩)的原生矿物发生溶蚀、水解、水化、碳酸化、氧化,破坏原始的矿物结构,形成新的细粒矿物(主要是黏土质矿物)。在适合的地质条件下,持续的强烈化学风化作用会造成大部分活动的元素(如K、Na、Ca、Mg、Si)的流失与Al的残留富集从而形成铝土矿。现在观察到的沉积型铝土矿,虽然与古风化壳具有密切联系,但沉积型铝土矿多数是由沉积过程搬运到沉积盆地中所形成的强化学风化产物的沉积层,与古风化壳的残坡积层具有显著差别,只有少数工业价值不大(品位低、品质差)的残坡积相铝土矿。铝土矿含矿岩系的沉积环境与铝土矿(尤其是高品位、高品质的铝土矿)的成矿环境不尽相同。铝土矿主要形成于暴露于大气中的陆表环境(而非水下环境),由地下水淋滤作用形成(在渗流带由活动元素流失、Al等稳定元素残留富集而成)。本研究在铝土矿成矿作用分析等基础上,提出了以铝土矿沉积物等物源和沉积、成矿作用为依据的中国铝土矿床分类方案,包括原地或准原地残坡积物成因的红土型和喀斯特型,和异地物源沉积成因的沉积型。  相似文献   

15.
Bauxite is the ultimate fine-grained products of chemical weathering,and thus it is closely linked with the intense chemical weathering. Based on variations of parent rock and weathering processes,the weathering products can be subdivided into laterite and terra rossa,of which the former is formed by weathering of aluminosilicates and the latter is produced by the weathering of carbonates. During the intense chemical weathering,minerals in original subaerial sediments(parent rocks)would suffer a series of processes(dissolution,hydrolyzation,hydration,carbonation,and oxidation)and be destroyed or transformed,leading to formation of new minerals. In the favorable environment,continuously intense chemical weathering would cause the loss of most mobile elements(e.g., K,Na,Ca,Mg,Si)and the enrichment of Al,resulting in the formation of bauxite. Although sedimentary bauxites are closely linked with the weathering curst,they show obvious differences in formation processes. Sedimentary bauxites are composed of intense chemical weathering products that are transported from outside of the basin and re-deposited in the basin,while most weathering crusts are transformed from saprolite and/or deluvium in-situ,and they can only form low-grade bauxites. Sedimentary environments also differ in bauxite ore layers and bauxitic claystone layers. Bauxite ore layers are formed in the subaerial environment and controlled by the leaching process of groundwater in the vadose zone. Based on the analysis of bauxitization,this study proposes to use multiple parameters,such as provenance,sedimentation and mineralization,to build the new classification of Chinese bauxite deposits. In this classification,lateritic and karstic types of bauxite deposits are autochthonous or parautochthonous saprolite and/or deluvium,while sedimentary type is dominated by heterochthonous provenance.  相似文献   

16.
The Mediterranean-type karst-bauxite deposit of Morta?, south Turkey, placed unconformably between Cenomanian and Senonian shallow marine limestones is built of massive (MB), oolithic (OB), breccia-bearing (BB) and earthy (EB) bauxite horizons, from top to bottom. The MB layer is enriched in Al and REE (except Ce) due to loss of Si, Na, K, Mg and P. REE are accumulated in the BB but depleted in the EB layers. The ferruginous OB lost LREE and gained in HREE probable due to scavenging by authigenic heavy minerals like rutile, anatase and titanite. Total REE contents in the bauxite profile display an increasing trend from bottom to top, while negative and maximum positive Ce anomalies characterize the upper and the lower parts of the profile, respectively. This unusual REE behavior is explicable by assuming mobilization of Ce(IV) either under reducing condition or chemical complexation under alkaline conditions in the top layer and scavenging of Ce by Al-Mg hydrosilicates and Ti-oxides and/or precipitation with authigenic REE minerals, especially of the bastnäsite group near the bedrock limestones. Similarity in chondrite normalized-REE patterns of the Seydi?ehir phyllites, bauxite and terra rossa samples and the presence of tridymite (?) in bauxites makes a felsic source rock most likely and reveal a close genetic relationship between the Seydi?ehir phyllites and the recent terra rossa occurrences. The REE patterns of the bauxites resemble those of the Katrangedi?i limestone despite variations in ΣREE. Field observations and geochemical data together with mass-balance calculations suggest that the Morta? deposit was derived from the Seydi?ehir phyllites and argillic phase within the Katrangedi?i limestone which in turn have Precambrian (?) felsic, probably granitic precursors.  相似文献   

17.
18.
Bauxite occurrences of the Lower Cambrian carbonate complexes have been reviewed for the first time. Five Lower Cambrian bauxite shows have been geologically defined: in the southwestern part of Gornaya Shoriya, in Salair, and in the Kuznets Alatau. The distribution of the bauxite-bearing horizons in the stratigraphic range from the base of the Aldan stage to the top of the Lena stage has been faunally defined; the most significant of them (the Kayashkan show) lies on the boundary between the stages. Most of the bauxite shows display a number of common features of ore localization: association with thick (500–1500 m) sequences of arch aeocyathid-algal limestones of coastal-marine facias, a repetition of manifestation of bauxite-bearing horizons in the section of the surrounding carbonates, and geologic environments that controlled the juxtaposition in plan of the productive carbonate sequences and the outcrops of the earlier. often volcanogenle, aluminosilicate rocks, which could be formed during the bauxite-ore epochs of the source of supply of aluminum. Allites, slallites, and low-module bauxites predominate in the shows. Indirect features of bauxite occurrence in poorly outcropping regions are: the presence of dissemination halos of diaspore and fragments of brown ironstone (varieties of ferruginous bauxites) in the friable cover above the bauxites. A number of promising areas in the Kuznets Alatau, Gornaya Shoriya, Salair, and the Altay have been recommended for reconnaissance exploration of the Lower Cambrian bauxites.—Author  相似文献   

19.
Analysis of terminology used for the aluminous rocks shows expediency of the application of term “allite” for the whole group of aluminous rocks. However, irregular behavior of Al in the natural setting calls for the identification of two principally different groups: typical bauxites of different genetic classes and chemogenic allites (chemallites). Taking into consideration the mineral and chemical compositions and geological constraints of these rocks, their typification is refined and some corrections are introduced into the terminology. Allites are divided into the following types: chemogenic bauxites of the Moscow region and Birilei area; supergene sulfate allites of Siberia and the Zhigulevsk area; volcanogenic sulfate allites of the Zaglik area; aluminous argillizites; and metamorphogenic allites. In terms of the chemical and mineral compositions and technological properties, chemogenic allites of the first two types are rather similar to sedimentary bauxites with a small boehmite admixture. In mineralogical diagrams, they mainly correspond to the clayey bauxite field.  相似文献   

20.
The Parnassos-Ghiona bauxite deposits of Greece are hosted within carbonate rocks and have been formed during different geological ages. The most economically important deposits occur in the B3 bauxite horizon, which is developed over long distance as a continuous layer of 1–10 m in thickness, within Cretaceous limestones. Due to intense tectonics, a significant (approximately 30 vol.%) bauxite ores along and near their contact with faults show a brittle deformation and change in the color from red to black-gray, in a distance of tens of meter. Commonly gray to whitish bauxites are aluminum-enriched (> 65 wt.% Al2O3) and iron depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号