首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Algero–Provençal and the Tyrrhenian extensional basins developed in two stages in a geodynamic setting characterized by the nearly N–S convergence between Africa and Eurasia. The spreading of the Provençal basin occurred in the early Miocene following a long period of rifting in the western Mediterranean area. A dramatic eastward shift of the active extensional deformation resulted in the Tortonian to Quaternary opening of the Tyrrhenian basin. In a companion paper, Carminati et al. propose that: a trench retreat process in a geodynamic setting locked by the continental collisions in the Alps and in the Betic chain is a viable mechanism for the late Oligocene–early Langhian opening of the western Mediterranean; a Langhian slab detachment episode along the north African margin is likely to have caused the end of the trench retreat along this part of the boundary determining the end of active expansion in the western Mediterranean and the beginning of active extension in the Tyrrhenian basin. The objective of the present paper is to quantitatively test this proposed scenario. We calculate, by means of a thin shell model, the effects of these plate boundary reorganizations on the European stress and strain field. We show that the two-stage opening of the western and central Mediterranean can be explained by the evolution proposed by Carminati et al. and that, in particular, the eastward shift of the active extension which produced the termination of the first opening stage and the beginning of the second is likely to have been triggered by the slab detachment episode along the north African margin.  相似文献   

2.
The Betic Cordillera and the Moroccan Rif together form one of the smallest and tightest orogenic arcs on Earth and almost completely close the Mediterranean to the west. For the explanation of the geodynamic evolution of the mountain belt, palaeomagnetic data that generally found clockwise block rotations in the Iberian and anticlockwise rotations in the Moroccan part of the mountain belt, have played a key role in recent works. This palaeomagnetic study has found new constraints on the rotations and timing of the peridotitic bodies outcropping in the key position at the westernmost margin of the mountain belt, in Ceuta and Beni Bousera (Rif, northern Africa).Detailed thermal demagnetization of 115 individually oriented samples from 14 sites was combined with rock magnetic and scanning electron microscopic experiments to analyze the magnetic mineralogy responsible for the remanences and the mechanisms and relative times of their acquisition. In Ceuta, up to three magnetic components, and in Beni Bousera, up to two magnetic components have been found, that are all to be interpreted as chemical remanent magnetizations (CRM). The data suggests the following succession of geodynamic events affecting the peridotites until recent times: (1) after their exhumation and subsequent cooling about 20 Ma ago, they recorded a characteristic remanent magnetization of both normal and reversed polarities, carried by (pseudo-)single-domain magnetite grains; (2) after their dismembering, the Ceuta peridotites were tilted southward by 22–34° about a horizontal or tilted axis (up to plunge 50°) with an azimuth of 72–145° and the Beni Bousera peridotites were rotated anticlockwise by 72.3 ± 12.1° about a vertical axis and (3) both recorded another magnetic signal of normal polarity only, carried by multi-domain magnetite grains; and finally (4) the Ceuta peridotites rotated anticlockwise by 19.7 ± 5.9° about a vertical axis.This study provides the first palaeomagnetic data for the Ceuta peridotites that, with their tilt and recent small net rotation, had a distinct geodynamic evolution from the large net rotations about vertical axes in Beni Bousera and Ronda (Betic Cordillera). Moreover, earlier palaemagnetic data for Beni Bousera is improved, as mixed polarities have been found in the older of the remanences for the first time, and its interpretation as a CRM changes the rotation timing that was proposed previously. The sequence of events exposed in this work are important constraints that need to be incorporated in any geodynamic model of the evolution of the Betic–Rifean mountain belt.  相似文献   

3.
The highly heterogeneous strain field indicated by neotectonic and seismological data in the central-eastern Mediterranean region has been reproduced, at a first approximation, by finite element modelling, of a 2D elastic thin plate. The zone considered is modelled as a mosaic of poorly deformable zones decoupled by highly deformable belts, simulating the major tectonic structures indicated by geological and geophysical evidence. The deformation of the model is obtained by imposing kinematic boundary conditions, representative of the motion of Africa and eastern Anatolia relative to Eurasia. Experiments carried out with different boundary conditions and model parameterisations have provided information on the sensitivity of the model and some insights into the geodynamic behavior of the study area. The deformation pattern of the central Mediterranean area is strongly conditioned by the mechanical properties assumed in the border zones between the Aegean and Adriatic systems. The match of the complex strain pattern observed in the western Anatolian–Aegean–Balkan zones is significantly favoured if high rigidity is assigned to the inner part of this structural system. A motion of Africa with respect to Eurasia compatible with an Eulerian pole located offshore Portugal best accounts for the observed strains in the central Mediterranean region. The match of the strongly heterogeneous strain field observed in the study area can hardly be achieved by simplified models not including major tectonic features and lateral heterogeneity of mechanical properties. The kinematic field resulting from the model configuration which best simulates the observed strain field presents some differences with respect to geodetic measurements in the Aegean–Western Anatolian area, where the computed velocities are systematically lower than the geodetic ones. It is suggested that the most plausible explanation of such differences is related to the fact that the present deformation pattern, inferred from geodetic data, may be different from the middle–long term one, inferred from seismological and geological data.  相似文献   

4.
We present GPS observations in Morocco and adjacent areas of Spain from 15 continuous (CGPS) and 31 survey-mode (SGPS) sites extending from the stable part of the Nubian plate to central Spain. We determine a robust velocity field for the W Mediterranean that we use to constrain models for the Iberia-Nubia plate boundary. South of the High Atlas Mountain system, GPS motions are consistent with Nubia plate motions from prior geodetic studies. We constrain shortening in the Atlas system to <1.5 mm/yr, 95% confidence level. North of the Atlas Mountains, the GPS velocities indicate Nubia motion with respect to Eurasia, but also a component of motion normal to the direction of Nubia-Eurasia motion, consisting of southward translation of the Rif Mountains in N Morocco at rates exceeding 5 mm/yr. This southward motion appears to be directly related to Miocene opening of the Alboran Sea. The Betic Mountain system north of the Alboran Sea is characterized by WNW motion with respect to Eurasia at ~1–2 mm/yr, paralleling Nubia-Eurasia relative motion. In addition, sites located in the Betics north of the southerly moving Rif Mountains also indicate a component of southerly motion with respect to Eurasia. We interpret this as indicating that deformation associated with Nubia-Eurasia plate motion extends into the southern Betics, but also that the Betic system may be affected by the same processes that are causing southward motion of the Rif Mountains south of the Alboran Sea. Kinematic modeling indicates that plate boundary geometries that include a boundary through the Straits of Gibraltar are most compatible with the component of motion in the direction of relative plate motion, but that two additional blocks (Alboran-Rif block, Betic Mountain block), independent of both Nubia and Eurasia are needed to account for the motions of the Rif and Betic Mountains normal to the direction of relative plate motion. We speculate that the southward motions of the Alboran-Rif and Betic blocks may be related to mantle flow, possibly induced by southward rollback of the subducted Nubian plate beneath the Alboran Sea and Rif Mountains.  相似文献   

5.
—A palaeomagnetic investigation has been carried out at 14 sites on Jurassic red nodular limestones from the central and eastern part of the External Zones of the Betic Cordillera (Subbetic and Prebetic Zones). Progressive thermal demagnetisation of samples from the Subbetic Zone reveals the presence of two stable magnetic components of the natural remanent magnetisation: 1) a secondary Neogene syn-folding component and 2) the original Jurassic magnetisation. As similar characteristics have been reported in Jurassic limestones from the western Subbetic Zone, a widespread remagnetisation event took place within <106 years in the entire Subbetic region during Neogene times. In contrast, in the Prebetic region, no evidence for a secondary overprint has been detected. Palaeomagnetic Jurassic declinations indicate variable and locally very large clockwise rotations (35°–140°), but the two sites in the north-westernmost part of the investigated region are not rotated. The use of both components of magnetisation and the incremental fold-test results allowed the timing of block rotations in the Subbetic Zone to be constrained. Rotations in the western Subbetic occurred after the acquisition of the secondary overprint, whereas in the central part of the Subbetic Zone they were completed by the time of the remagnetisation event.  相似文献   

6.
Travel times of 11,612 Pn arrivals collected from 7675 earthquakes are inverted to image the uppermost mantle velocity and anisotropy structure beneath the southern half of the Iberian Peninsula and surrounding regions. Pn phases are routinely identified and picked for epicentral distances from 200 to 1200 km. The method used in this study allows simultaneous imaging of variations of Pn velocity and anisotropy. The results show an average uppermost mantle velocity beneath the study area of 8.0 km/s. The peninsular area covered by the Iberian massif is characterized by high Pn velocity, as expected in tectonically stable regions, indicating areas of the Hercynian belt that have not recently been reactivated. The margins of the Iberian Peninsula have undergone a great number of recent tectonic events and are characterized by a pronouncedly low Pn velocity, as is common in areas greatly affected by recent tectonic and magmatic activity. Our model indicates that the Betic crustal root might be underlined by a negative anomaly beneath the southeastern Iberian Peninsula. In the Atlantic Ocean, we find a sharp variation in the uppermost mantle velocities that coincides with the structural complexity of the European and African plate boundary in the Gulf of Cadiz. Our results show a very pronounced low-velocity anomaly offshore from Cape San Vicente whereas high velocities are distributed along the coast in the Gulf of Cadiz. In the Alboran Sea and northern Morocco, the direction of the fastest Pn velocity found is almost parallel to the Africa–Eurasia plate convergence vector (northwest–southeast) whereas to the north, this direction is almost parallel to the main trend of the Betic Cordillera, i.e. east–west in its central part and north–south in the curvature of the Arc of Gibraltar. This suggests that a significant portion of the uppermost mantle has been involved in the orogenic deformation that produced the arcuate structure of the Betic Cordillera. However, we assume that the Neogene extension had no major influence on a lithospheric scale in the Alboran Sea. Our results also show a quite complex pattern of anisotropy in the southwest Iberian lithospheric mantle since the relationship between the direction of fastest Pn velocity and major Hercynian tectonic trends cannot be directly established.  相似文献   

7.
We are proposing a hypothesis that earthquake swarms in the West Bohemia/Vogtland seismoactive region are generated by magmatic activity currently transported to the upper crustal layers. We assume that the injection of magma and/or related fluids and gases causes hydraulic fracturing which is manifested as an earthquake swarm at the surface. Our statements are supported by three spheres of evidence coming from the western part of the Bohemian Massif: characteristic manifestations of recent geodynamic activity, the information from the neighbouring KTB deep drilling project and from the 9HR seismic reflection profile, and the detailed analysis of local seismological data. (1) Recent manifestations of geodynamic activity include Quaternary volcanism, rich CO 2 emissions, anomalies of mantle-derived 3 He, mineral springs, moffets, etc. (2) The fluid injection experiment in the neighbouring KTB deep borehole at a depth of 9 km induced hundreds of micro-earthquakes. This indicates that the Earth's crust is near frictional failure in the western part of the Bohemian Massif and an addition of a small amount of energy to the tectonic stress is enough to induce an earthquake. Some pronounced reflections in the closely passing 9HR seismic reflection profile are interpreted as being caused by recent magmatic sills in the crust. (3) The local broadband seismological network WEBNET provides high quality data that enable precise localization of seismic events. The events of the January 1997 earthquake swarm are confined to an extremely narrow volume at depths of about 9 km. Their seismograms display pronounced reflections of P- and S-waves in the upper crust. The analysis of the process of faulting has disclosed a considerable variability of the source mechanism during the swarm. We conclude that the mechanism of intraplate earthquake swarms generated by magma intrusions is similar to that of induced seismicity. As the recent tectonic processes and manifestations of geodynamic activity are similar in European areas with repeated earthquake swarm occurrence (Bohemian Massif, French Massif Central, Rhine Graben), we assume that magma intrusions and related fluid and gas release at depths of about 10 km are the universal cause of intraplate earthquake swarm generation  相似文献   

8.
The presence of continuous upper crustal blocks between the Iberian Betics and Moroccan Rif in the western and middle Alboran Sea, detected with tomography, can add new information about the lithosphere structure and geodynamic evolution in this region. A large volume of seismic data (P and S wave arrival times) has been collected for the period between 1 December 1988 and 31 December 2008 by 57 stations located in northern Morocco (National Institute of Geophysics, CNRST, Rabat), southern Portugal (Instituto de Meteorologia, Lisbon) and Spain (Instituto Geografico National, Madrid) and used to investigate the lithosphere in the western Alboran Sea region. We use a linearized inversion procedure comprising two steps: (1) finding the minimal 1-D model and simultaneous relocation of hypocenters and (2) determination of local velocity structure using linearized inversion. The model parameterization in this method assumes a continuous velocity field. The resolution tests indicate that the calculated images give near true structure imaged at 5 km depth for the Tanger peninsula, the Alhoceima region and southern Spain. At 15, 30 and 45 km depth we observe a near true structure imaged in northern Morocco, and southern Spain. At 60 and 100 km, southern Spain and the SW region of the Alboran Sea give a near true structure. The resulting tomographic image shows the presence of two upper crustal bodies (velocity 6.5 km/s) at 5–10 km depth between the Betics, Rif, western and central Alboran Sea. Low velocities at the base of these two bodies favor the presence of melt. This new evidence proves that the Tethysian ocean upper crust was not totally collapsed or broken down during the late Oligocene–early Miocene. These two blocks of upper crust were initially one block. The geodynamic process in the eastern of the Mediterranean is driven by slab rollback. The delamination process of the lithospheric mantle terminates with the proposed slab rollback in the western part of the Mediterranean. This can be explained by the removal of the major part of the lithosphere beneath the area, except in the SW part of the Alboran Sea where a small part of the lithospheric mantle is still attached and is extends and dips to SE beneath the Rif, slowly peeled back to the west. A second detached lithospheric mantle is located and extends to eastern part of the Rif and dips to the SE. The removal of lithosphere mantle from the base of the crust was replaced and heated by extrusion of asthenospheric material coming from depth to replace the part of crust detached. A combination of isostatic surface/topographic uplift and erosion induced a rapid exhumation and cooling of deep crustal rocks.  相似文献   

9.
The western part of the Bohemian Massif has played an exceptional role in recent geodynamic activity of the region. It is characterised by repeated occurrences of earthquake swarms and by other manifestations of deep tectonic processes (CO 2 emissions, anomalous 3 He content, mineral waters, mofettes, etc.). The purpose of this paper is to introduce some other intraplate regions with earthquake swarm occurrence (French Massif Central; Colli Albani and Vulsini Mts., central Italy; Southern Apennines, Italy; the Danville and Long Valley regions, California; central Arkansas), and with artificially induced earthquake swarms (Larderello, Italy, geothermal field; Coso, California, geothermal field; NE Bavaria, Germany, deep drilling project). Although these areas represent different tectonic environments, the manifestations of recent geodynamic and/or man-made activity are similar in many aspects. This coincidence most probably issues from a common cause of both tectonic and artificially induced earthquake swarms – intrusions/injections of fluids. Since the regions with earthquake swarm occurrence of tectonic origin are situated as a rule in the close neighbourhood of Quaternary volcanoes, the intruding fluids seem to be derived from magma recently transported to upper crustal layers.  相似文献   

10.
A crustal tomographic image, from the surface down to 35 km depth beneath the Betic Cordillera (southern Spain), is obtained using data on local earthquakes recorded at stations from the National and Andalusian Seismic Networks. The velocity structure and the hypocentre locations are derived from the inversion of P first arrival times, using an iterative simultaneous inversion method. The reliability of the results is assessed using different control parameters. The inverted velocity field in the uppermost layers shows a significant lateral variability which reflects most of the large-scale geological features of the Betic Cordillera. Well determined local surface anomalies allow to constrain the location and geometry of the most prominent Neogene sedimentary basins. The upper crust is well resolved throughout the whole region, and is characterized by relatively high velocities in the Internal Betics and in the South Iberian Massif and lower velocities within the External Betics. A relatively well constrained event cluster displays a NNE–SSW trend, and outlines the contact zone between the Internal and the External domains. The middle and lower crustal levels show reliable results beneath the central part of the Betic Cordillera. High averaged velocities are obtained within the South Iberian and the Alboran domains, in contrast to a relatively low velocity anomaly which characterizes the boundary between them. These findings support the hypothesis of the lack of well differentiated crustal levels below the contact zone, while crustal layering is better defined beneath the Alboran and the Iberian domains.  相似文献   

11.
Within the Spain and Moroccan networks, a large volume of seismic data has been collected and used for investigating the lithosphere in the Betic–Rif Cordillera. The present study has two main goals: (1) Use the most actual seismological data from recent earthquakes in the Betic–Rif arc for investigating the lithosphere through the application of seismic local tomography techniques. (2) Define the possible structural blocks and explain the GPS velocities perturbation in this region. The resolution tests results indicate that the calculated images gave a close true structure for the studied regions from 5- to 60-km depth. The resulting tomographic image shows that the presence of two upper crust body (velocity 6.5 km/s) at 3- to 13-km depth between Iberian Betic and Moroccan Rif in the western and in the middle of Alboran Sea also shows the low velocity favoring the presence of melt in the base of these two bodies. The crustal bodies forms tectonic blocks in the Central Rif and in the Central Betic Cordillera.  相似文献   

12.
Water balance variables were monitored in a farmed Mediterranean catchment characterized by a dense ditch network to allow for the separate estimation of the diffuse and concentrated recharge terms during flood events. The 27 ha central part of the catchment was equipped with (i) rain gauges, (ii) ditch gauge stations, (iii) piezometers, (iv) neutron probes, and (v) an eddy covariance mast including a 3D sonic anemometer and a fast hygrometer. The water balance was calculated for two autumnal rain and flood events. We also estimated the uncertainty of this approach with Monte Carlo simulations. Results show, that although ditch area represents only 6% of the total study area, concentrated recharge appeared to be the main source of groundwater recharge. Indeed, it was 40–50% of the total groundwater recharge for autumnal events, which are the major annual recharge events. This indicate that both, concentrated and diffuse recharge should be taken into account in any hydrological modeling approach for Mediterranean catchments. This also means that, since they collect overland flow that is often largely contaminated by chemicals, ditches may be a place where groundwater contamination is likely to occur. The uncertainty analysis indicates that recharge estimates based on water balance exhibit large uncertainty ranges. Nevertheless, Monte Carlo simulations showed that concentrated recharge was higher than expected based on their area.  相似文献   

13.
Seismic reflection along the path of the Mediterranean Undercurrent   总被引:2,自引:0,他引:2  
Seismic reflection profiling is applied to the study of large scale physical oceanographic processes in the Gulf of Cádiz and western Iberian coast, coinciding with the path of the Mediterranean Undercurrent. The multi-channel seismic reflection method provides clear images of thermohaline fine structure with a horizontal resolution approximately two orders of magnitude higher than CTD casting. The seismic data are compared with co-located historical oceanographic data. Three seismic reflectivity zones are identified: North Atlantic Central Water, Mediterranean Water and North Atlantic Deep Water. Seismic evidence for the path of the Mediterranean Undercurrent is found in the near-slope reflectivity patterns, with rising reflectors between about 500 and 1500 m. However, the core of the undercurrent is largely transparent. Seismic images show that central and, particularly, intermediate Mediterranean Waters have fine structure coherent over horizontal distances of several tens of kilometers. However, the intensity of the reflectors, and their horizontal coherence, decreases downstream. This change in seismic reflectivity is probably the result of diminished vertical thermohaline contrasts between adjacent water masses, so that double-diffusion processes become unable to sustain temperature and salinity staircases. Comparison of root-mean-square seismic amplitudes with temperature and salinity differences between the Mediterranean Undercurrent and the overlying central waters suggests a causal relationship between observed thermohaline fine structure and true seismic amplitudes. We estimate that, within this intermediate water stratum, impedance contrasts are mainly controlled by sound speed contrasts (a factor between 3.5 and 10 times larger than density contrasts), which are mainly controlled by temperature contrasts (a factor between 1.5 and 5 times larger than salinity contrasts).  相似文献   

14.
The Southern Tyrrhenian Sea is an extensional basins linked to the Neogene evolution of the Calabria subduction zone located in the western Mediterranean realm where controversial kinematic and geodynamical models have been proposed. Our study provides a key to unravel timing and mode of extension of the upper plate and the breakup of Calabria from Sardinia. By combining original stratigraphic analysis of wells and seismic profiles off Calabria with a stratigraphic correlation to onshore outcrops, we re-assess the tectonic evolution that controlled the sedimentation and basement deformation of the Southern Tyrrhenian basin during Serravallian–Tortonian times. We document the tectono-stratigraphic evolution of adjacent extensional basins characterized by 3rd order depositional sequences (Ser1, Tor1 and Tor2) and different modes of extension, subsidence and opposite dipping faults. Episodic basin development is recorded by a coarsening-up and fining-up trend of the sedimentary succession and by tectonically enhanced unconformities that reflect three episodes of fault activity. We reconstruct Serravallian–Tortonian paleogeographic maps and propose a block faulting model for the evolution of the Sardinia–Calabria area. Sardinia was disconnected from Calabria through N–S normal faults forming Tyrrhenian extensional basins that formed contemporaneously to the E–W opening of the Algerian basin. Unlike published Serravallian–Tortonian reconstructions of the western Mediterranean realm, our results support a geodynamic model characterized by rapid trench retreat, trench-normal extension in the entire overriding plate and very weak coupling between plates.  相似文献   

15.
Hercynian basement rocks and Mesozoic ophiolites of the Calabria-Peloritani terrane drifted in the present position during the opening of western Mediterranean basins (namely Liguro-Provençal and Tyrrhenian basins) since the Oligocene. Basement rocks were partly involved by Alpine (late Cretaceous—Eocene) deformation and metamorphism before the onset of the drifting process. Even though the kinematics of the Alpine deformation in Calabria has been already defined, restoration of structural and kinematic data to the original position and orientation before the opening of the western Mediterranean has never been performed. In this work we present new structural and petrological data on a major tectonic contact of Alpine age exposed in central Calabria (Serre Massif). Structural and kinematic data are then restored at the original orientation in the early Oligocene time, to allow a correct tectonic interpretation.In the Serre Massif the Hercynian basement is sliced into three nappes emplaced during the Alpine orogeny. The upper nappe is formed by a nearly continuous section of the Hercynian crust, consisting of medium- to high-grade metamorphic rocks in the lower portion. The intermediate nappe mainly consists of orthogneisses, whereas the lower nappe is chiefly composed of phyllites. The contacts between the Alpine nappes are outlined by well developed mylonitic and cataclastic rocks. The Curinga-Girifalco Line is a well exposed shear zone that overprints mainly metapelitic rocks of the upper nappe and granitoid orthogneisses of the intermediate nappe. Mylonites of the intermediate nappe typically show overgrowths on garnet and hornblende with grossular-rich and tschermakitic composition, respectively. The Alpine mineral assemblage indicates that deformation took place in epidote-amphibolite facies at pressures ranging from 0.75 to 0.9 GPa.In the investigated area mylonites strike roughly WNW–ESE, with shallow dips towards SSW. Kinematic indicators in mylonites are mostly consistent with a top-to-the-SE shear sense in the present geographic coordinates. The mylonitic belt is affected by later extensional faults outlined by South-dipping cataclasite horizons. Published geochronological data indicate that mylonites and cataclasites developed in Eocene and early Miocene times, respectively.Considering rotational parameters coming from paleomagnetic studies and large-scale palinspastic reconstructions, the shear sense of the Curinga-Girifalco Line has been restored to the early Oligocene position and orientation. Through restoration a top-to-the-S shear sense is obtained. This result is in striking agreement with the convergence direction between Africa and W-Europe/Iberia during Eocene, computed from the North Atlantic magnetic anomalies. Our geodynamic reconstruction, combined with structural and petrological evidence, allows to relate the Curinga-Girifalco mylonites to a thrust related to the southeastern front of the double-verging Alpine chain. The adopted method could be used also for other exotic terranes, such as the Kabylie or the Corsica-Sardinia, to better constrain geometry and evolution of the southern Alpine belt.  相似文献   

16.
Tectonic reconstructions based on the geodynamic analysis of geologic, paleomagnetic, structural and kinematic data of Cenozoic age from the western Bering Sea region are proposed in the present paper. The most active tectonic and magmatic processes took place in the Komandorsky segment of the Bering Sea, exemplified by the Late Cretaceous–Early Eocene Olutorsky Arc and Eocene–Oligocene Govena–Karaginsky Arc, which was built on the structures of the Olutorsky Arc. A model of the complex collision of these two arcs with the paleocontinental margin, which considers rotations of the geological blocks from the various structural zones of the western margin of the Bering Sea in the horizontal plane (paleomagnetic data), was proposed by the authors. According to this model the collision of the flanks of the Olutorsky and Govena–Karaginsky arcs took place in the Eocene, before the collision of the central parts in the Miocene.  相似文献   

17.
We argue that the study of long-range interaction between seismic sources in the peri-Adriatic regions may significantly contribute to estimating seismic hazard in Italy. This hypothesis is supported by the reconstruction of the geodynamic and tectonic settings in the Central Mediterranean region, the space–time distribution of major past earthquakes, and the quantification of post-seismic relaxation. The most significant evidence of long-distance interaction is recognized for the Southern Apennines, whose major earthquakes have almost regularly followed within a few years the largest events in the Montenegro-Albania zone since 1850. Statistical analyses of the post-1850 earthquake catalogues give a probability of about 10% that a major event in the Southern Apennines is not preceded by the occurrence of a strong event in the Southern Dinarides–Albanides within 3–5 years. Conversely, the probability of false alarms is relevant (50% within 3 years, 33% within 5 years). Northward, the tectonic setting and some patterns of regularity seen in major events suggest that the seismic activation of the main transtensional decoupling shear zones in the Central Apennines should influence the probability of major earthquakes in the Northern Apennines.  相似文献   

18.
The Alpine Orogen in the Mediterranean region exhibits a series of orogenic curvatures (oroclines). The evolution of these oroclines is relatively well constrained by a plethora of geophysical and geological data, and therefore, their origin can inform us on the fundamental processes controlling oroclinal bending. Here, a synthesis of the geometry of Mediterranean oroclines, followed by a discussion on their geodynamic origin is presented. The geometrical synthesis is based on a new classification of Mediterranean oroclines, which defines a first-order orocline (Adriatic Orocline) by the general northward-convex shape of the Alpine Orogen from Cyprus to Gibraltar. Superimposed on the limbs of this orocline, are second-, third- and fourth-order oroclines. The major process that led to the formation of the Adriatic Orocline is the indentation of Adria into Europe, whereas second- and third-order oroclines (e.g., Western Mediterranean and Gibraltar oroclines, respectively) were primarily controlled by a combination of trench retreat and slab tearing. It appears, therefore, that the geodynamics of Mediterranean oroclines has been entirely dependent on plate boundary migration and segmentation, as expressed in the interlinked processes of indentation, trench retreat and slab tearing. The relative contribution of specific geodynamic processes, and their maturity, could be inferred from geometrical characteristics, such as the amplitude-to-width ratio, the orientation of the curvature (convex or concave) relative to the convergence vector, and their geometrical relationship with backarc extensional basins (e.g., in the concave side of the orocline). Based on the information from the Mediterranean oroclines, it is concluded that oroclinal bending commonly involves lithospheric-scale processes, and is not restricted to thin-skinned deformation. However, contrary to previous suggestions that assume that the whole lithosphere can buckle, there is no clear evidence that such processes occur in modern tectonic environments.  相似文献   

19.
Introduction For a long time, the seismologists have paid great attentions to the research on the spatio- temporal distribution of earthquake intensity, which provide us with significant information for the researches on crustal stress variation, tectonic activity and earthquake risk prediction in a certain spatio-temporal region. The existing results have shown consistently that the intensity of earth- quakes is characterized by non-stability, non-linearity in temporal domain and non-uniformi…  相似文献   

20.
The Ihlara Valley is situated within a volcanic arc that is formed by the collision of the eastern Mediterranean plate system with the Anatolian plate. In this study we will present data from a reservoir monitoring project over the Ihlara-Ziga geothermal field, located 22 km east of Aksaray, in central Anatolia.Although identified geothermal resources in the Ihlara Valley are modest, substantial undiscovered fields have been inferred primarily from the volcanic and tectonic setting but also from the high regional heat flow (150–200 mWm−2) on the Kir ehir Massif.In 1988 and 1990, geoelectromagnetic surveys were undertaken by MTA-Ankara to confirm the presence of a relatively shallow (≈ 0.5–1 km), hydrothermally caused conductive layer or zone. CSAMT and Schlumberger resistivity data show good correspondence with each other, and 2-D geoelectric models are also in harmony with geologic data and gravity anomalies.The depth of the resistive basement, which is interpreted as Paleozoic limestone, is 200–250 m in the western part and increases eastward (≈ 600–750 m). This may imply N-S-oriented normal faulting within the survey area. The parameters of the top layer are a resistivity of 25 to 95 ohm m and a thickness of between 100 and 250 m. The thickness of the conductive tuffs between the top layer and the basement, whose resistivity is about 4–5 o hmm, also increases eastward (from 100 to 450 m). The apparent resistivity maps for the frequencies between 32 and 2 Hz reveal a localized low resistivity anomaly to the east of Belisirma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号