首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
The day-to-day variations in ozone content at Uccle (51°N) during some stratospheric warming events are examined. In particular, the attention is focused on the timing of commencement of ozone enhancement prior to peak day of warming and on the relationship in the ozone content between the upper and lower stratosphere. These two features are compared with the predictions of ozone transport models. There seems to be an agreement between model predictions and observed features in some cases.  相似文献   

2.
A one -dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees south.Vertical transport and nitrogen-oxygen (NOx). hydrogen-oxygen (HOx) production by ionic reactions have been introduced into the model.NOx and HOx produced by precipitating ions are transported into the lower stratosphere by vertical motion and have some effects in the development of the Antarctic ozone depletion.From winter through spring the calculated ozone column decreases to 269.4 DU. However, this value is significantly higher than the total ozone observed at several Antarctic ozone stations.  相似文献   

3.
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%--6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000--2050 than between 2050--2100, driven mainly by the larger relative change in chlorine in the earlier period.  相似文献   

4.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

5.
The ozone budget inside the middle stratospheric polar vortex(24-36 km) during the 2002-2003 Arctic winter is studied by analyzing Michelson Interferometer for Passive Atmospheric Sounding(MIPAS) satellite data.A comprehensive global chemical transport model(Model for Ozone and Related Chemical Tracers,MOZART-3) is used to analyze the observed variation in polar vortex ozone during the stratospheric sudden warming(SSW) events.Both MIPAS measurement and MOZART-3 calculation show that a pronounced increase(26-28 DU) in the polar vortex ozone due to the SSW events.Due to the weakening of the polar vortex,the exchange of ozone mass across the edge of the polar vortex increases substantially and amounts to about 3.0× 107 kg according to MOZART-3 calculation.The enhanced downward transport offsets about 80% of polar vortex ozone mass increase by horizontal transport.A "passive ozone" experiment shows that only ~55% of the vertical ozone mass flux in February and March can be attributed to the variation in vertical transport.It is also shown that the enhanced downward ozone above ~32 km should be attributed to the springtime photochemical ozone production.Due to the increase of air temperature,the NOx reaction rate increases by 40%-80% during the SSW events.As a result,NOx catalytic cycle causes another 44% decrease in polar vortex ozone compared to the net ozone changes due to dynamical transport.It is also shown that the largest change in polar vortex ozone is due to horizontal advection by planetary waves in January 2003.  相似文献   

6.
Observations have shown highly variable ozone depletion over the Antarctic in the 2000s, which could affect the long-term ozone trend in this region as well as the global ozone recovery. By using the total column ozone data (1979-2011), interannual variation of the springtime Antarctic ozone tow is investigated, together with its relationship with the polar vortex evolution in the lower stratosphere. The results show that springtime Antarctic ozone depletion has continued in the 2000s, seemingly contradicting the consensus view of a global ozone recovery expected at the beginning of the 21st century. The spring Antarctic polar vortex in the lower stratosphere is much stronger in the 2000s than before, with a larger area, delayed breakup time, and greater longevity during 2000-2011. Fhrther analyses show that the recent continuation of springtime Antarctic ozone depletion could be largely attributed to the abnormal variation of the Antarctic polar vortex.  相似文献   

7.
As the strongest subseasonal atmospheric variability during boreal winter, three remarkable sudden stratospheric major warming(SSW) events in the 2000 s are investigated in terms of the Brewer–Dobson circulation(BDC) response. Our study shows that the changes of cross-isentropic velocity during the SSWs are not only confined to the polar region, but also extend to the whole Northern Hemisphere: enhanced descent in the polar region, as well as enhanced ascent in the tropics. When the acceleration of the deep branch of the BDC descends to the middle stratosphere, its strength rapidly decreases over a period of one to two weeks. The acceleration of the deep branch of the BDC is driven by the enhanced planetary wave activity in the mid-to-high-latitude stratosphere. Different from the rapid response of the deep branch of the BDC, tropical upwelling in the lower stratosphere accelerates up to 20%–40% compared with the climatology, 20–30 days after the onset of the SSWs,and the acceleration lasts for one to three months. The enhancement of tropical upwelling is associated with the large-scale wave-breaking in the subtropics interacting with the midlatitude and tropical Quasi-Biennial Oscillation–related mean flow.  相似文献   

8.
9.
In the 20 th century, Eurasian warming was observed and was closely related to global oceanic warming(the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901–2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP–NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation(NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.  相似文献   

10.
This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variability is identified and measured using a daily NAM index, which concentrates primarily on zonally symmetrical circulation. A schematic lifecycle of submonthly variability is developed that reveals a two-way coupling pro- cess between the stratosphere and troposphere in the NH polar region. Specifically, anomalous tropospheric zonal winds in the Atlantic and Pacific sectors of the Arctic propagate upwards to the low stratosphere, disturbing the polar vortex, and resulting in an anomalous stratospheric geopotential height (HGT) that subsequently propagates down into the troposphere and changes the sign of the surface circulations. From the standpoint of planetary-scale wave activities, a feedback loop is also evident when the anoma- lous planetary-scale waves (with wavenumbers 2 and 3) propagate upwards, which disturbs the anomalous zonally symmetrical flow in the low stratosphere, and induces the anomalous HGT to move poleward in the low stratosphere, and then propagates down into the troposphere. This increases the energy of waves at wavenumbers 2 and 3 in the low troposphere in middle latitudes by enhancing the land-sea contrast of the anomalous HGT field. Thus, this study supports the viewpoint that the downward propagation of stratospheric NAM signals may not originate in the stratosphere.  相似文献   

11.
The response of El Niño and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO2 concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Niño-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO-like SST variability to global warming.  相似文献   

12.
Abstract

To evaluate future climate change in the middle atmosphere and the chemistry–climate interaction of stratospheric ozone, we performed a long-term simulation from 1960 to 2050 with boundary conditions from the Intergovernmental Panel on Climate Change A1B greenhouse gas scenario and the World Meteorological Organization Ab halogen scenario using the chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). In addition to this standard simulation we performed five sensitivity simulations from 2000 to 2050 using the rerun files of the simulation mentioned above. For these sensitivity simulations we used the same model setup as in the standard simulation but changed the boundary conditions for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone-depleting substances (ODS). In the first sensitivity simulation we fixed the mixing ratios of CO2, CH4, and N2O in the boundary conditions to the amounts for 2000. In each of the four other sensitivity simulations we fixed the boundary conditions of only one of CO2, CH4, N2O, or ODS to the year 2000.

In our model simulations the future evolution of greenhouse gases leads to significant cooling in the stratosphere and mesosphere. Increasing CO2 mixing ratios make the largest contributions to this radiative cooling, followed by increasing stratospheric CH4, which also forms additional H2O in the upper stratosphere and mesosphere. Increasing N2O mixing ratios makes the smallest contributions to the cooling. The simulated ozone recovery leads to warming of the middle atmosphere.

In the EMAC model the future development of ozone is influenced by several factors. 1) Cooler temperatures lead to an increase in ozone in the upper stratosphere. The strongest contribution to this ozone production is cooling due to increasing CO2 mixing ratios, followed by increasing CH4. 2) Decreasing ODS mixing ratios lead to ozone recovery, but the contribution to the total ozone increase in the upper stratosphere is only slightly higher than the contribution of the cooling by greenhouse gases. In the polar lower stratosphere a decrease in ODS is mainly responsible for ozone recovery. 3) Higher NOx and HOx mixing ratios due to increased N2O and CH4 lead to intensified ozone destruction, primarily in the middle and upper stratosphere, from additional NOx; in the mesosphere the intensified ozone destruction is caused by additional HOx. In comparison to the increase in ozone due to decreasing ODS, ozone destruction caused by increased NOx is of similar importance in some regions, especially in the middle stratosphere. 4) In the stratosphere the enhancement of the Brewer-Dobson circulation leads to a change in ozone transport. In the polar stratosphere increased downwelling leads to additional ozone in the future, especially at high northern latitudes. The dynamical impact on ozone development is higher at some altitudes in the polar stratosphere than the ozone increase due to cooler temperatures. In the tropical lower stratosphere increased residual vertical upward transport leads to a decrease in ozone.  相似文献   

13.
从描述南、北半球间大气经向质量传输的角度人手,考察IPCC第4次评估报告提供的8个AMIP大气环流模式对越赤道质量通量输送的模拟性能。结果表明:NCAR、MPI和UKMO模式模拟出的越赤道整层大气质量通量与观测大体相一致;MIROC3模拟的整层大气质量通量年循环与观测结果相去甚远,尤其在夏季模拟出较强的虚假向北大气质量输送;IAP模拟的整层大气质量通量年循环方向与观测结果在7个月份中相反;把垂直大气分为4层.各模式对700 hPa以下(I_1)和300-70 hPa(I_3)两层质量通量的模拟能力普遍较好;对700-300 hPa层(I_2)质量通量模拟结果偏差较大;除MIROC3外,其余模式基本能够模拟出70-10 hPa(I_4)大气质量通量的季节变化.显然,不仅南、北半球间大气存在质量交换,越过其他纬度同样存在着经向大气质量输送,无论冬季、夏季还是年平均,各模式对越过其他纬度(60°S-60°N)经向大气质量输送的模拟结果与观测差异明显。整体权衡,UKMO_HADGEMl在模拟越赤道大气质量通量方面表现突出,MPI_ECHAM5模式优势较明显;NCAR、GISS和GFDL 3个模式在某些压力层内具有较好的模拟水平;MIROC模式对整层、700-300 hPa层的模拟能力较低,而对700 hPa以下层和300-70 hPa层的模拟水平较高;IAP_FGOALS和CNRM模式在模拟越赤道大气质量通量方面存在一定的不足.  相似文献   

14.
Increasing greenhouse gases and likely ozone recovery will be the two most important factors influencing changes in stratospheric temperatures in the 21st century. The radiative effect of increasing greenhouse gases will cause cooling in the stratosphere, while ozone recovery will lead to stratospheric warming. To investigate how stratospheric temperatures change under the two opposite forcings in the 21st century, we use observed ozone and reanalysis data as well as simulation results from four coupled oceanic and atmo- spheric general circulation models (GISS-ER, GFDL-CM20, NCAR-CCSM3, and UKMO-HadCM3) used in the IPCC (Intergovernment Panel for Climate Change) Fourth Assessment Report (AR4). Observational analysis shows that total column ozone and lower stratospheric temperatures all show increasing in the past 10 years, while middle stratospheric temperatures demonstrate cooling. IPCC AR4 simulations show that greenhouse forcing alone will lead to stratospheric cooling. However, with forcing of both increasing greenhouse gases and ozone recovery, the middle stratosphere will be cooled, while the lower stratosphere will be warmed. Warming magnitudes vary from one model to another. UKMO-HadCM3 generates relatively strong warming for all three greenhouse scenarios, and warming extends to 40 hPa. GFDL-CM20 and NCAR-CCSM3 produce weak warming, and warming mainly exists at lower levels, below about 60 hPa. In addition, we also discuss the effect of temperature changes on ozone recovery.  相似文献   

15.
Model differences in projections of extratropical regional climate change due to increasing greenhouse gases are investigated using two atmospheric general circulation models (AGCMs): ECHAM4 (Max Planck Institute, version 4) and CCM3 (National Center for Atmospheric Research Community Climate Model version 3). Sea-surface temperature (SST) fields calculated from observations and coupled versions of the two models are used to force each AGCM in experiments based on time-slice methodology. Results from the forced AGCMs are then compared to coupled model results from the Coupled Model Intercomparison Project 2 (CMIP2) database. The time-slice methodology is verified by showing that the response of each model to doubled CO2 and SST forcing from the CMIP2 experiments is consistent with the results of the coupled GCMs. The differences in the responses of the models are attributed to (1) the different tropical SST warmings in the coupled simulations and (2) the different atmospheric model responses to the same tropical SST warmings. Both are found to have important contributions to differences in implied Northern Hemisphere (NH) winter extratropical regional 500 mb height and tropical precipitation climate changes. Forced teleconnection patterns from tropical SST differences are primarily responsible for sensitivity differences in the extratropical North Pacific, but have relatively little impact on the North Atlantic. There are also significant differences in the extratropical response of the models to the same tropical SST anomalies due to differences in numerical and physical parameterizations. Differences due to parameterizations dominate in the North Atlantic. Differences in the control climates of the two coupled models from the current climate, in particular for the coupled model containing CCM3, are also demonstrated to be important in leading to differences in extratropical regional sensitivity.  相似文献   

16.
Based on ensemble experiments with three atmospheric general circulation models(AGCMs), this study investigates the role of the Atlantic Multidecadal Oscillation(AMO) in shaping the summer nonuniform warming over the Eurasian continent since the mid-1990 s. The results validate that the positive-phase AMO can indeed cause nonuniform warming,with predominant amplified warming over Europe–West Asia and Northeast Asia, but with much weaker warming over Central Asia. The underlying mechanism is then diagnosed from the perspective that the boundary forcing modulates the intrinsic atmospheric variability. The results highlight the role of the Silk Road Pattern(SRP), an intrinsic teleconnection pattern across the subtropical Eurasian continent propagating along the Asian jet. The SRP can not only be identified from the AGCM control experiments with the climatological sea surface temperature(SST), but can also be simulated by the AMO-related SST anomaly(SSTA) forcing. Furthermore, diagnostic linear baroclinic model experiments are conducted, and the results suggest that the SRP can be triggered by the AMO-related tropical diabatic heating. The AMO-triggered SRP-like responses feature anticyclonic circulations over Europe–West Asia and Northeast Asia, but cyclonic circulation over Central Asia. These responses cause increased warm advection towards Europe–West Asia and Northeast Asia, reduced precipitation and cloud cover, and then increased downward shortwave radiation. This increased warm advection and increased downward shortwave radiation together cause amplified warming in Europe–West Asia and Northeast Asia. The situation is opposite for Central Asia.  相似文献   

17.
Two coupled general circulation models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models, were chosen to examine changes in mixed layer depth (MLD) in the equatorial tropical Pacific and its relationship with ENSO under climate change projections. The control experiment used pre-industrial greenhouse gas concentrations whereas the 2 × CO2 experiment used doubled CO2 levels. In the control experiment, the MLD simulated in the MRI model was shallower than that in the GFDL model. This resulted in the tropical Pacific’s mean sea surface temperature (SST) increasing at different rates under global warming in the two models. The deeper the mean MLD simulated in the control simulation, the lesser the warming rate of the mean SST simulated in the 2 × CO2 experiment. This demonstrates that the MLD is a key parameter for regulating the response of tropical mean SST to global warming. In particular, in the MRI model, increased stratification associated with global warming amplified wind-driven advection within the mixed layer, leading to greater ENSO variability. On the other hand, in the GFDL model, wind-driven currents were weak, which resulted in mixed-layer dynamics being less sensitive to global warming. The relationship between MLD and ENSO was also examined. Results indicated that the non-linearity between the MLD and ENSO is enhanced from the control run to the 2 × CO2 run in the MRI model, in contrast, the linear relationship between the MLD index and ENSO is unchanged despite an increase in CO2 concentrations in the GFDL model.  相似文献   

18.
The Lagrangian advection scheme ATTILA has been applied for the transport of water vapor and cloud water in the general circulation model (GCM) ECHAM4.L39(DLR) (E39) instead of the operational semi-Lagrangian transport scheme (SLT). ATTILA is a purely Lagrangian scheme that is numerically non-diffusive, while the operational semi-Lagrangian scheme exhibits a considerable numerical diffusion in the presence of sharp gradients. The model version E39/SLT significantly overestimates the water vapor mixing ratio in the extratropical lowermost stratosphere (wet bias) by a factor of 3–5 compared to HALOE observations. Compared to E39/SLT, E39/ATTILA shows substantially reduced water vapor mixing ratios in the extratropical lowermost stratosphere up to 70%, and a steeper meridional water vapor gradient in the subtropics which is in better agreement with observations. Furthermore, the temperature distribution as simulated with E39/SLT is characterized by a pronounced cold temperature bias in the extratropical lowermost stratosphere (cold bias) and in the polar stratosphere above 50 hPa in winter (cold pole). The improvements concerning the water vapor distribution in E39/ATTILA lead to a substantial reduction of the simulated cold bias by approximately 5–7 K which also results in a better representation of the modeled tropopause, especially in the extratropics. Sensitivity studies indicate that the warming of the extratropical lowermost stratosphere in E39/ATTILA is directly related to the reduced wet bias resulting in a less infrared radiative cooling. Additionally, the cold pole problem is also slightly reduced in E39/ATTILA by approximately 2–5 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号