首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments.A plane-strain finite element model is proposed to investigate the ultimate soil resistance to the partially-embedded pipeline under the action of ocean currents.Two typical end-constraints of the submarine pipelines are examined,i.e.freely-laid pipes and anti-rolling pipes.The proposed numerical model is verified with the existing mechanical-actuator experiments.The magnitude of lateral-soil-resistance coefficient for the examined anti-rolling pipes is much larger than that for the freely-laid pipes,indicating that the end-constraint condition significantly affects the lateral stability of the untrenched pipeline under ocean currents.The parametric study indicates that,the variation of lateral-soil-resistance coefficient with the dimensionless submerged weight of pipe is affected greatly by the angle of internal friction of soil,the pipe-soil friction coefficient,etc.  相似文献   

2.
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.  相似文献   

3.
钢制悬链线式立管的触地段与海床会发生频繁的相互作用,对管道的安全性影响很大。首先探索干土环境下管土作用的机理有助于更好地理解真实海况下管道—湿土作用规律。试验测试是研究管土作用最可信最直接的手段。进行了垂向及侧向管土作用机理性试验,根据土体抗剪强度验证了试验中相互作用机理与管道尺寸的无关性。研究了不同运动速度对土体反力的影响,发现运动速度对垂向及侧向管土作用均存在一定的放大效应,而垂向低速工况下放大效应不明显;接着分别研究了垂向与侧向管土作用的规律,分析了土体反力变化的成因,最后针对管土垂向—侧向的耦合效应进行研究,发现不同的垂向深度会极大地影响侧向管土作用。为后续的管道—含水土体相互作用试验奠定基础,也可为陆上管土作用相关研究提供参考与建议。  相似文献   

4.
李凯  国振  王立忠 《海洋工程》2018,36(3):33-42
选择恰当的管土相互作用模型,对于准确描述海洋悬链线立管在触地区的动力响应至关重要。首先总结分析了国内外已有的三类典型管土作用模型,并基于三种模型计算模拟了触地区管道的竖向运动过程,计算结果与试验数据进行了对比验证。选用的三类模型均包括四个管土作用状态,即未接触、初始贯入、上拔和再贯入。研究发现:RQ模型对管道远端管道埋深的预测结果远比试验值小,明显低估了管道的触地区范围;AB模型可以考虑管道的开槽效应,但对于土体强度弱化估算不准,预测的管道埋深远低于试验值;ABY模型能够考虑土体强度的循环弱化,但在模拟管土相互作用时会严重低估土体的强度,预测的管道远端的埋深远大于试验值,这可能导致对管道疲劳寿命的估计错误,需对其进行必要的修正。  相似文献   

5.
In this work, we carried out an asymptotic analysis, up to the second order in a regular expansion, of the interaction of linear long waves with an impermeable, fixed, submerged breakwater composed of wavy surfaces. Below the floating breakwater, there is also a step with a wavy surface. The undulating surfaces are described by sinusoidal profiles. The effects of three different geometric parameters — the amplitude of the wavy surfaces and the submerged length and width of the structure — on the reflection and transmission coefficients are analyzed. The hydrodynamic forces are also determined. The governing equations are expressed in dimensionless form. Using the domain perturbation method, the small wavy surfaces of the breakwater are linearized. The wavy surfaces of the breakwater generate larger values of the reflection coefficient than those obtained for breakwaters with flat surfaces, and the largest values of this coefficient are obtained when the length of the breakwater is of the same order of magnitude as the wavelength. The asymptotic solution is compared with the theoretical solutions that have been reported in the specialized literature and with a numerical solution. The present mathematical model can be used as a practical reference for the selection of the geometric configuration of a submerged floating breakwater under shallow flow conditions.  相似文献   

6.
研究旨在提出波流联合作用下海底管道侧向运动数值模拟分析方法。通过建立三维离散刚体模拟海床,梁单元模拟海底管道,设置了两个载荷步模拟管道与土壤接触的过程,解决了实体模型不易收敛的问题。分析了不同管—土法向行为接触刚度、不同管—土切向行为摩擦系数、不同波流参数以及不同单位长度管道水下质量对海底管道侧向运动的影响。研究表明:海底管道的最大等效应力、最大侧向位移、最大接触压力以及最大横向摩擦剪应力对于管—土法向行为接触刚度的变化并不敏感;管道的最大侧向位移随着管—土切向行为摩擦系数增大而减小,呈现出线性变化的关系;当波高一定时,管道的最大侧向位移随着流速的增加而增大,并且波高越小,最大侧向位移随流速增加的速度明显越大;管道最大侧向位移随着单位长度管道水下质量的增加而减小,并且呈现出线性变化的关系。  相似文献   

7.
The cyclic movement of a riser at the touchdown zone (TDZ), which involves complicated pipe–soil interaction, is critical to its long-term safety. Most previous studies have focused on the pipe–soil interaction of the riser in the vertical plane at the TDZ. Therefore, we conducted laboratory tests to investigate the pipe–soil interaction during lateral cyclic pipe movements and the influence of seabed evolution around the TDZ on the following vertical cyclic pipe movements. At the TDZ, the bell mouth shape of the clay bed and ladle-like shape of the pipe were observed during lateral cycling. The movement trajectory of the pipe as well as the gradual penetration process was recorded, which may be mainly attributed to the lateral ploughing and soil softening around the pipe. The test dynamic embedment factor (ratio of the dynamic embedment and static embedment) was 1.7–2.7. The enlargement of the TDZ during cycling was measured, which was mainly related to the movement of the trench surface point. The increase in the undrained strength of the soil at the TDZ after dynamic tests proves that a crust of soil was formed beneath the pipe owing to consolidation during cyclic pipe–soil interaction.  相似文献   

8.
钢悬链式立管(steel catenary riser,简称SCR)的流线段敷设在海床上,在浮体运动和环境荷载作用下管线作拔出海床的上升运动时,软质海床的黏性性质将阻碍管线的拔出而表现出吸力效应。吸力的大小与管线的拔出速度和管土循环作用次数、土的重塑时间等相关。基于现有试验数据拟合得到吸力数值模型,用于改进立管动力分析程序,研究立管拔出速度和管径等对触地区吸力分布、动态响应和疲劳寿命的影响。结果表明:海床土吸力对立管触地区应力特别是弯曲应力的影响较大,二者的变化趋势相似;管径的影响主要体现在贯入深度与管径的相对大小,同一贯入速度下,管径越小则相对贯入深度越大,拔出位移与吸力也会越大,反之则越小;立管的拔出速度是影响海床吸力最大值和拔出位移的主要因素,土吸力和拔出位移随拔出速度的增大而增大,导致触地区的疲劳损伤加剧。因此,探究管土耦合作用的吸力效应及其对SCR触地区疲劳损伤的影响,可为SCR与复杂海床相互作用及工程应用提供重要参考。  相似文献   

9.
The vertical stability of a submarine pipeline laid half-buried on the sea floor under wave action is studied. As the wave-induced lifting force acts to detach the pipe from the sea floor, mud suction resistance will be developing at pipe-soil interface, acting to hold the pipe in place. This couples the pipe equilibrium with the seabed response which is modelled as a poroelastic media, following the formulation of Biot. Conditions for pipe detachment or breakout from the sea floor are investigated for typical seawave, pipe, and seabed parameters. A general power law will describe the slow quasistatic breakout of the pipe. In the case when the forcing wave period is much shorter than the quasistatic breakout time, the response function of the coupled pipe-seabed system will involve weak nonlinear terms of higher harmonics. The possibilities for resonating the system in such case are examined by including the inertia of the pipe in the analysis.  相似文献   

10.
The axial friction response of subsea pipelines in soft clays is a very important aspect for designers of subsea pipelines but the response is not well understood so far. There is a pressing need for the comprehension of the response. In this paper, model tests are performed using full-scale pipes coated with polyethylene (PE) to study the effects of the set-up period, the pipe diameter, the buried depth of the pipe, the shear strength of soft clays and the loading rate on the axial friction response of pipelines in soft clays. The variations of the axial friction coefficient are analyzed using the effective stress method based on model test results. The results show that the axial friction resistance increases with the increasing pipe diameter but the effect of the pipe diameter on the axial friction coefficient can be neglected. The ultimate axial resistance also increases with the increase of the buried depth of pipelines, the undrained shear strength of soft clays and the loading rate. The axial friction coefficient increases with the increasing loading rate. However, the axial friction coefficient decreases with the increasing buried depth. The method to determine the axial friction coefficient is developed by analyzing model test results, which considers the effects of the diameter, the buried depth, the undrained shear strength of soft clays and the loading rate. The study results not only extend the industry data base but also supply a basis to determine the axial friction coefficient of PE-coated pipes in soft clays for ocean engineering geological investigations.  相似文献   

11.
Yong Liu  Bin Teng 《Ocean Engineering》2008,35(16):1588-1596
This study examines the hydrodynamic performance of a modified two-layer horizontal-plate breakwater. The breakwater consists of an upper submerged horizontal porous plate and a lower submerged horizontal solid plate. By means of the matched eigenfunction expansion method, a linear analytical solution is developed for the interaction of water waves with the structure. Then the reflection coefficient, the transmission coefficient, the energy-loss coefficient and the wave forces acting on the plates are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a single submerged horizontal solid plate and a single submerged horizontal porous plate. Numerical results show that with a suitable geometrical porosity of the upper plate, the uplift wave forces on both plates can be controlled at a low level. Numerical results also show that the transmission coefficient will be always small if the dimensionless plate length (plate length versus incident wavelength) exceeds a certain moderate value. This is rather significant for practical engineering, as the incident wavelength varies over a wide range in practice. Moreover, it is found that the hydrodynamic performance of the present structure may be further enhanced if the lower plate is also perforated.  相似文献   

12.
Large-scale field tests were conducted to study set-up effect in open-ended prestressed high-strength concrete pipe piles jacked into stratified soil. Four open-ended prestressed high-strength concrete pipe piles with 13 and 18 m in embedment depth were fully instrumented with fiber Bragg grating sensors and installed. Several restrike dynamic tests were performed on each test pile, with the time interval from 21.5 to 284 hours after installation. Static loading tests (SLTs) were later performed on each test pile at 408 hours after installation to substantiate the dynamic tests. Changes with time in pile bearing capacity and in the shaft and toe resistances were studied based on the results of the pile tests. The development of shaft resistance set-up in different layers was studied in particular. It was found that set-up effect in the shaft resistance is significant and the toe resistance increment was minor. The overall set-up factor of total bearing capacity was found to range from 0.09 to 0.53, and the set-up effect of friction pile is much larger than the end bearing pile. More significant set-up in shaft resistance was observed in fill and alluvium layer. The dimensionless set-up factor A for shaft resistance in marine deposits ranges from 0.5 to 1.43, and it contributes the most to the shaft resistance as the shaft resistance in marine deposits is higher.  相似文献   

13.
Pipelines are the main element in transporting hydrocarbons from their extraction sites to on-shore or floating facilities, with preference now given to pipelines laid directly on the seabed due to their fast and economic installation. However, these pipelines are exposed and must be stable under all environmental conditions, and therefore, their design for on-bottom stability is of critical importance. Although accurate prediction of the pipe–soil interaction behaviour under hydrodynamic loads from waves and currents is of major concern, limited physical testing of pipes subjected to these cyclic loading conditions has occurred. Tests have concentrated on simpler load combinations in order to develop pipe–soil friction factors or the key parameters in plasticity models that described pipe–soil behaviour. In this paper, results from geotechnical centrifuge experiments of a model pipe on calcareous sand soil collected from offshore on the North West Shelf of Australia are presented. A sophisticated load control scheme allowed complex paths characteristic of hydrodynamic loads to be applied during the testing. Furthermore, pipe testing could be extended to relatively large horizontal movements of up to 5 pipe diameter. The results of the centrifuge testing programme provide improved understanding of the pipe–soil interaction under complex hydrodynamic load paths. They have also been used to assess a state-of-the-art plasticity model describing pipe–soil interaction on calcareous sands.  相似文献   

14.
Wave reflection by a vertical wall with a horizontal submerged porous plate   总被引:3,自引:0,他引:3  
By applying the linear water wave theory and the eigenfunction expansion method, the wave reflection by a vertical wall with a horizontal submerged porous plate is investigated in this paper. The numerical results, concerning the effects of the dimensionless plate length, the relative water depth, and the porous effect parameter of the plate on the wave loads on the plate and the wave height near the wall as well as the reflection coefficient, are discussed. It is found that the submerged plate increases the complexity of the phenomenon related to the wave reflection and refraction in the close region of the wall, and leads to the occurrence of the phenomenon of wave trapping. The results indicate that there may exist a process of focusing wave energy near the wall for small dimensionless porous effect parameters, whereas the increase of the dimensionless porous effect parameter decreases gradually the wave height until setdown occurs. The behavior of a larger plate with proper porosity is similar to that of a wave absorber which can significantly suppress not only the wave height above the plate but also the reflection waves. The ability of the porous plate to reduce the wave height on the wall surface is, in general, directly proportional to the dimensionless plate length and may be strongest for a proper value of the dimensionless porous effect parameter. It is also demonstrated that the wave loads on a porous plate are smaller than those on an impermeable plate.  相似文献   

15.
柔性水囊潜堤由橡胶制成,内部充水,具有结构简单、造价低廉等优点,能较好满足人工岛、跨海桥梁、海洋平台等基础设施建设工程对简单便携、拆装方便的临时防波堤的需求。为了探究柔性水囊潜堤的消波特性,在溃坝水槽内开展溃坝波与半圆柱形柔性水囊潜堤相互作用的试验研究,重点探究柔性水囊潜堤与溃坝波相互作用过程中水位变化特性,并与半圆柱刚性潜堤的性能进行比较;同时分析柔性水囊潜堤内部初始水压和浸没深度等参数对其消波性能的影响。结果表明:柔性水囊潜堤能够用作临时防波堤来衰减波浪;与半圆柱刚性潜堤相比,柔性水囊潜堤在降低溃坝波无量纲最大水位、提高消波性能方面更具优势;内部初始水压是影响柔性水囊潜堤消波性能的重要因素,适当降低内部初始水压,有利于增强柔性潜堤的变形程度,进而增加波能耗散,可获得更好的消波效果;而增加浸没深度即潜深,会使得柔性水囊潜堤对溃坝波的影响程度降低,消波效果减弱。  相似文献   

16.
在柔性管运输、铺设安装和服役过程中,由于其抗拉铠装层钢带为柔性细长螺旋结构,当外部载荷超过临界值时,抗拉铠装层钢带容易发生屈曲失效。考虑非线性材料、几何大变形、层间接触和摩擦等非线性效应的影响,运用ABAQUS有限元软件建立了63.5 mm典型非黏结柔性管8层完整结构模型,研究了在抗拉铠装层不同层间摩擦系数的情况下,非黏结柔性管在轴向压缩载荷作用下的力学性能和屈曲失效模式。研究结果表明,层间摩擦系数对非黏结柔性管的抗压刚度和抗拉铠装层屈曲失效模式有较大影响,层间摩擦系数以0.1和0.2为分界点,抗压刚度和屈曲失效模式均呈现出“三段式”变化规律。研究成果可为海洋非黏结柔性管的结构设计和屈曲失效评估提供技术参考。  相似文献   

17.
围绕钢悬链线立管(SCR)与海床的相互作用,在水箱内开展三维试验研究,研究在不同模拟运动激励下SCR触地点的应力状态。针对当前模拟试验中,全尺寸试验耗资巨大,且试验环境难以控制,缩尺试验大多模拟立管二维运动等现状,提出一套简单易行的三维管土作用试验装置,通过横向、纵向、垂向三个方向轨道位置的合理布置,使得立管可在单向、二维耦合和三个方向同时运动,对模型立管的顶端、底端的边界条件进行处理,通过驱动器在顶端施加位移,模拟在周期运动作用下,立管触地区与土的相互作用,在三维空间内研究立管的力学特性。由此指导立管的整体设计与分析,对保证SCR在深水油气开采中的安全可靠性,具有非常重要的意义。  相似文献   

18.
在现有的矩形方箱和透空结构的基础上,提出一种由立管和水平板组合而成的消浪结构。利用波浪水槽物理模型试验,测试该结构在单向规则波作用下的消浪性能。分别探讨了其单排布置和双排布置时的透射系数随结构宽度、相对吃水深 度、相对间距等因素的变化规律。结果表明:单排布置时,透射系数随结构宽度的增大而减小,总体上随吃水深度的增大而减小;双排布置时,透射系数相对总宽度相同的单体结构减少 10 %,透射系数随吃水深度的增大而减小,前后间距对透射系数的影响不明显。对试验结果数据进行曲线拟合,得到了透射系数关于各影响因素的函数表达式。  相似文献   

19.
Hydrodynamic behavior of a straight floating pipe under wave conditions   总被引:2,自引:0,他引:2  
This paper examines the hydrodynamic behavior of a floating straight pipe under wave conditions. The main problem in calculating the forces acting on a small-sized floating structure is obtaining the correct force coefficients Cn and Ct, which differ from a submerged structure. For a floating straight pipe of small size, we simplify it into a 2D problem, where the pipe is set symmetrically under wave conditions. The force equations were deduced under wave conditions and a specific method proposed to resolve the wave forces acting on a straight floating pipe. Results of the numerical method were compared to those from model tests and the effects of Cn and Ct on numerical results studied. Suggestions for the selection of correct Cn and Ct values in calculating wave forces on a straight floating pipe are given. The results are valuable for research into the hydrodynamic behavior of the gravity cage system.  相似文献   

20.
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case I: pipe is laid above seabed and Case II: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e0/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of Vr for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e0/D (−0.25<e0/D<0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号