首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lift based cycloidal wave energy converter (WEC) was investigated using potential flow numerical simulations in combination with viscous loss estimates based on published hydrofoil data. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. The operation of the WEC as a wave-to-shaft energy converter interacting with straight crested waves was estimated for an actual ocean wave climate. The climate chosen was the climate recorded by a buoy off the north-east shore of Oahu/Hawaii, which was a typical moderate wave climate featuring an average annual wave power PW = 17 kWh/m of wave crest. The impact of the design variables radius, chord, span and maximum generator power on the average annual shaft energy yield, capacity factor and power production time fraction were explored. In the selected wave climate, a radius R = 5 m, chord C = 5 m and span of S = 60 m along with a maximum generator power of PG = 1.25 MW were found to be optimal in terms of annual shaft energy yield. At the design point, the CycWEC achieved a wave-to-shaft power efficiency of 70%. In the annual average, 40% of the incoming wave energy was converted to shaft energy, and a capacity factor of 42% was achieved. These numbers exceeded the typical performance of competing renewables like wind power, and demonstrated that the WEC was able to convert wave energy to shaft energy efficiently for a range of wave periods and wave heights as encountered in a typical wave climate.  相似文献   

2.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

3.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

4.
The paper aims at introducing practical methods for power capture performance enhancement of a heaving wave energy converter in irregular seas. The optimum control solution requires tuning to wave frequency based on wave force information. However, identification of the wave frequency in irregular seas is considered to be a complex and difficult task. This is partly due to technical difficulties in determination of the wave force. Besides, there are no clear guidelines for identification of wave frequency from an irregular sea state based wave force information. In a typical application, one of the available sources of information about the wave properties is the wave elevation record. The proposed approach presents a method for estimation of the wave frequency information from the wave elevation data by using signal processing and filtering techniques. The proposed method uses filters to generate an estimation of wave force information, which is used to identify the local wave frequency by method of a time-series analysis of the data. This wave frequency information is then used in tuning the device. The details of the proposed techniques, the model of the wave energy converter, the simulated sea states and the related simulation results are also presented.  相似文献   

5.
A parametric study was carried out to investigate the hydrodynamics of a cylindrical wave energy absorber. Established methods of hydrodynamic analysis were applied to the case of a damped vertically oriented cylinder pivoted near the sea floor in intermediate depth water. The simple geometry provides a canonical reference for more complex structure shapes and configurations that may be considered for either wave energy conversion or wave energy absorption. The study makes use of the relative velocity Morison equation, with force coefficients derived from radiation and diffraction theory. Viscous effects were accounted for by including a drag term with an empirically derived coefficient, CD. A non-linear first-order formulation was used to calculate the cylinder motion response in regular waves. It was found that the non-linear drag term, which is often neglected in studies on wave energy conversion, has a large effect on performance. Results from the study suggest a set of design criteria based on Keulegan–Carpenter (KC) number, ratio of cylinder radius to water depth (a/h), and ratio of water depth to wavelength (h/L). Respectively, these parameters account for viscous, wave radiation, and water depth effects, and optimal ranges are provided.  相似文献   

6.
随着国际社会对海洋可再生能源开发利用的关注,众多海洋能发电装置投入研发。目前我国已有相当一部分海洋能发电装置进入海试阶段。因此,在海洋能发电装置海试的过程中,需要对海洋能发电装置的发电性能进行检测。文中介绍了海洋能发电装置现场检测平台的设计,研究并设计检测方法以满足海洋能发电装置现场检测的需求。海洋能发电装置现场检测平台的设计以满足波浪能、潮流能发电装置的测试需求为主,兼顾其他形式的发电装置。该平台主要对海洋能发电装置的功率特性、电能质量特性以及电网适应性等指标进行测试,并根据海洋能发电装置的测试结果开展分析与评价。  相似文献   

7.
8.
9.
Several control methods of wave energy converters (WECs) need prediction in the future of wave surface elevation. Prediction of wave surface elevation can be performed using measurements of surface elevation at a location ahead of the controlled WEC in the upcoming wave. Artificial neural network (ANN) is a robust data-learning tool, and is proposed in this study to predict the surface elevation at the WEC location using measurements of wave elevation at ahead located sensor (a wave rider buoy). The nonlinear autoregressive with exogenous input network (NARX NN) is utilized in this study as the prediction method. Simulations show promising results for predicting the wave surface elevation. Challenges of using real measurements data are also discussed in this paper.  相似文献   

10.
The paper presents results for the distribution of wave heights from laboratory generated bimodal sea states. Data collected at the DHI offshore basin are analyzed and compared with results based on wave records from the MARINTEK offshore basin. The comparisons are done for three groups of mixed sea states: wind-sea dominated, swell-dominated and energy-equivalent, determined on the basis of the parameter sea-swell energy ratio (SSER), which have been generated according to the model of Guedes Soares (1984). In some sea states abnormal or freak waves have been observed.The quasi-determinism theory of Boccotti is used to expand some linear narrowband models to second order, thus providing validation of the adequacy of the equations to represent the linear components of the wave heights. Also, the data are compared with the predictions of a third order model using as a nonlinear correction the coefficient of kurtosis. Due to the coexistence of wind-sea and swell, the core of the autocovariance function in some cases demonstrates a global minimum which is the second local minimum in the sequence. This can affect the fitting ability of distributions whose parameters depend on the form of the autocorrelation function or its envelope.The results for MARINTEK and DHI data show similar patterns of fit between predicted and observed exceedance probabilities for the considered classes of bimodal spectra.  相似文献   

11.
This study aims at assessing the adequacy for describing bimodal sea states of different non-linear probability distributions that have been developed for single sea states. It is based on data collected at an offshore test basin. The measurements represent three bimodal sea states with individual unidirectional wave systems propagating at 60, 90 and 120 from each other. The wave spectra are separated into swell and wind sea components and the relative energy ratio between the areas under the associated spectral curves is estimated and is related with the statistics of the time series considered. Dependence is found between the normalized high order cumulants, which describe the non-Gaussian surface, and the predominant contribution of the wind sea energy. Furthermore, the probabilities of exceedance of the individual wave heights are estimated and compared with the Rayleigh model and with other models that take into account either the effect of spectral bandwidth or the effect of wave nonlinearities. The results are discussed with respect to three classes of sea states that reflect the relative contribution of swell and wind sea energy.  相似文献   

12.
13.
海洋波浪能平均功率的准确计算是波浪能开发和利用的基础。实践中,波浪能转换装置一般安装在有限水深区域。对于随机波,只有当详尽的波浪谱已知的时候,有限水深区的波能功率才能被准确计算出来。由于种种原因,实践中波浪的实测数据大多以散点图或有义波高和统计波周期的形式给出,而波浪谱信息有时则很难获得。基于这种情况,传统上人们利用无限水深条件下的相关公式来估算有限水深区域的波能功率,但这种做法会造成较大的误差。本研究显示,对于50 m水深的理论波谱JONSWAP谱来说该误差高达14.6%。为了提高波能功率计算的准确性,本文提出了一种基于能量频率的一阶和二阶近似算法,可以在未知波浪谱的情况下较为准确地计算不同水深时的波能功率。针对两种理论波浪谱的计算结果表明,本方法在计算有限带宽内的波能功率时计算误差低于2.8%。  相似文献   

14.
An increasing number of experiments are being conducted to study the design and performance of wave energy converters. Often in these tests, a real-time realization of prospective control algorithms is applied in order to assess and optimize energy absorption as well as other factors. This paper details the design and execution of an experiment for evaluating the capability of a model-scale WEC to execute basic control algorithms. Model-scale hardware, system, and experimental design are considered, with a focus on providing an experimental setup capable of meeting the dynamic requirements of a control system. To more efficiently execute such tests, a dry bench testing method is proposed and utilized to allow for controller tuning and to give an initial assessment of controller performance; this is followed by wave tank testing. The trends from the dry bench test and wave tank test results show good agreement with theory and confirm the ability of a relatively simple feedback controller to substantially improve energy absorption. Additionally, the dry bench testing approach is shown to be an effective and efficient means of designing and testing both controllers and actuator systems for wave energy converters.  相似文献   

15.
In this paper, wave farms composed of two either surging or heaving wave energy converters are considered. Using a numerical model which takes into account wave interactions, the impact on the absorbed wave power of the separating distance between the two systems and the wave direction is studied. In regular waves, a modified qmod factor is introduced and it is found to be more relevant than the usual q factor for identifying this impact. Then, it is shown that, asymptotically, the alteration of the energy absorption due to wave interaction effects decreases with the square root of the distance. This is a slow decay, which leads to a still significant modification of the wave energy absorption at long distance (up to 15% at a distance of 2000 m). In irregular waves, it is shown that constructive and destructive effects compensate each other, particularly when considering the mean annual power. It leads to a smaller impact of the wave interactions on the absorbed energy and shorter distances (smaller than 10% for distances greater than 400 m). Finally, conclusions on if wave interactions should be taken into account or not when designing a wave farm are drawn in function of the distance.  相似文献   

16.
A spectral model suitable for the representation of wave energy converters is developed. A spectral model is an extension of a frequency-domain model that allows inclusion of non-linear forces and thereby provides improved estimates of wave energy converter performance, without the high computational cost of a time-domain model. The suitability and accuracy of a spectral model representation is demonstrated for a flap-type wave energy converter, by modelling the effect of vortex shedding and large amplitudes of motion. The development of a spectral model of wave energy converters also means that they can be represented in spectral wave models and included explicitly in software tools such as SWAN or Mike21 SW. This means that tools familiar to the industry could be used to determine the environmental impact and energy yield of wave farms efficiently.  相似文献   

17.
A pile-supported OWC breakwater is a novel marine structure in which an oscillating water column (OWC) is integrated into a pile-supported breakwater, with a dual function: generating carbon-free energy and providing shelter for port activities by limiting wave transmission. In this work we investigate the hydrodynamics of this novel structure by means of an analytical model based on linear wave theory and matched eigenfunction expansion method. A local increase in the back-wall draft is adopted as an effective strategy to enhance wave power extraction and reduce wave transmission. The effects of chamber breadth, wall draft and air chamber volume on the hydrodynamic performance are examined in detail. We find that optimizing power take-off (PTO) damping for maximum power leads to both satisfactory power extraction and wave transmission, whereas optimizing for minimum wave transmission penalizes power extraction excessively; the former is, therefore, preferable. An appropriate large enough air chamber volume can enhance the bandwidth of high extraction efficiency through the air compressibility effect, with minimum repercussions for wave transmission. Meanwhile, the air chamber volume is found to be not large enough for the air compressibility effect to be relevant at engineering scales. Finally, a two-level practical optimization strategy on PTO damping is adopted. We prove that this strategy yields similar wave power extraction and wave transmission as the ideal optimization approach.  相似文献   

18.
《Coastal Engineering》2006,53(9):711-722
In this paper it will be shown that the wave height parameter H50, defined as the average wave height of the 50 highest waves reaching a rubble-mound breakwater in its useful life, can describe the effect of the wave height on the history of the armor damage caused by the wave climate during the structure's usable life.Using Thompson and Shuttler (Thompson, D.M., Shuttler, R.M., 1975. Riprap design for wind wave attack: A laboratory study on random waves. HRS Wallingford, Report 61, UK) data it will be shown that H50 is the wave parameter that best represents the damage evolution with the number of waves in a sea state. Using this H50 parameter, formulae as van der Meer (van der Meer, J.W., 1988. Rock slopes and gravel beaches under wave attack. PhD Thesis. Technical University of Delft) and Losada and Giménez-Curto (Losada, M.A., Gimenez–Curto, L.A., 1979. The joint effect of the wave height and period on the stability of rubble mound breakwaters using Iribarren's number. Coastal Engineering, 3, 77–96) are transformed into sea-state damage evolution formulae. Using these H50-transformed formulae for regular and irregular sea states it will be shown how damage predictions are independent of the sea state wave height distribution.To check the capability of these H50-formulae to predict damage evolution of succession of sea states with different wave height distributions, some stability tests with regular and irregular waves have been carried out. After analysing the experimental results, it will be shown how H50-formulae can predict the observed damage independently of the sea state wave height distribution or the succession of sea states.  相似文献   

19.
The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submerged plate employed for the conversion of wave energy into electrical one. The numerical model used to solve the conservation equations of mass, momentum and transport of volume fraction is based on the finite volume method (FVM). In order to tackle with the flow of mixture of air-water and its interaction with the device, the multiphase model volume of fluid (VOF) is employed. The purpose of this study is the evaluation of a numerical model for improvement of the knowledge about the submerged plate wave energy converter, as well as the investigation of the effect of the distance from the plate to the bottom of the sea (HP) on the performance of the converter. The simulations for several distances of the plate from the seabed show that the optimal efficiency is 64%, which is obtained for HP=0.53 m (88% of the depth). This efficiency is 17% larger than that found in the worst case (HP=0.46 m, 77% of the depth).  相似文献   

20.
O.S. Rageh 《Ocean Engineering》2009,36(14):1112-1118
The efficiency of the breakwater, which consists of caissons supported on two or three rows of piles, was studied using physical models. The efficiency of the breakwater is presented as a function of the transmission, reflection and the wave energy dissipation coefficients. Regular waves with wide ranges of wave heights and periods and constant water depth were used. Different characteristics of the caisson structure and the supporting pile system were also tested. It was found that, the transmission coefficient (kt) decreases with increasing the relative breakwater draft D/L, increasing the relative breakwater width B/h, and decreasing the piles gap-diameter ratio G/d. It is possible to achieve kt values less than 0.25 when D/L≥0.1. The reflection coefficient takes the opposite trend especially when D/L≤0.15. The proposed breakwater dissipates about 10-25% of the incident wave energy. Also, simple empirical equations are developed for estimating the wave transmission and reflection. In addition, the proposed breakwater model is efficient compared with other floating breakwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号